forked from TensorLayer/tensorlayer3
145 lines
4.9 KiB
Plaintext
145 lines
4.9 KiB
Plaintext
// ------------------------------------------------------------------
|
|
// Faster R-CNN
|
|
// Copyright (c) 2015 Microsoft
|
|
// Licensed under The MIT License [see fast-rcnn/LICENSE for details]
|
|
// Written by Shaoqing Ren
|
|
// ------------------------------------------------------------------
|
|
|
|
#include "gpu_nms.hpp"
|
|
#include <vector>
|
|
#include <iostream>
|
|
|
|
#define CUDA_CHECK(condition) \
|
|
/* Code block avoids redefinition of cudaError_t error */ \
|
|
do { \
|
|
cudaError_t error = condition; \
|
|
if (error != cudaSuccess) { \
|
|
std::cout << cudaGetErrorString(error) << std::endl; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
|
|
int const threadsPerBlock = sizeof(unsigned long long) * 8;
|
|
|
|
__device__ inline float devIoU(float const * const a, float const * const b) {
|
|
float left = max(a[0], b[0]), right = min(a[2], b[2]);
|
|
float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
|
|
float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
|
|
float interS = width * height;
|
|
float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
|
|
float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
|
|
return interS / (Sa + Sb - interS);
|
|
}
|
|
|
|
__global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh,
|
|
const float *dev_boxes, unsigned long long *dev_mask) {
|
|
const int row_start = blockIdx.y;
|
|
const int col_start = blockIdx.x;
|
|
|
|
// if (row_start > col_start) return;
|
|
|
|
const int row_size =
|
|
min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
|
|
const int col_size =
|
|
min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
|
|
|
|
__shared__ float block_boxes[threadsPerBlock * 5];
|
|
if (threadIdx.x < col_size) {
|
|
block_boxes[threadIdx.x * 5 + 0] =
|
|
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
|
|
block_boxes[threadIdx.x * 5 + 1] =
|
|
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
|
|
block_boxes[threadIdx.x * 5 + 2] =
|
|
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
|
|
block_boxes[threadIdx.x * 5 + 3] =
|
|
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
|
|
block_boxes[threadIdx.x * 5 + 4] =
|
|
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
|
|
}
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x < row_size) {
|
|
const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
|
|
const float *cur_box = dev_boxes + cur_box_idx * 5;
|
|
int i = 0;
|
|
unsigned long long t = 0;
|
|
int start = 0;
|
|
if (row_start == col_start) {
|
|
start = threadIdx.x + 1;
|
|
}
|
|
for (i = start; i < col_size; i++) {
|
|
if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) {
|
|
t |= 1ULL << i;
|
|
}
|
|
}
|
|
const int col_blocks = DIVUP(n_boxes, threadsPerBlock);
|
|
dev_mask[cur_box_idx * col_blocks + col_start] = t;
|
|
}
|
|
}
|
|
|
|
void _set_device(int device_id) {
|
|
int current_device;
|
|
CUDA_CHECK(cudaGetDevice(¤t_device));
|
|
if (current_device == device_id) {
|
|
return;
|
|
}
|
|
// The call to cudaSetDevice must come before any calls to Get, which
|
|
// may perform initialization using the GPU.
|
|
CUDA_CHECK(cudaSetDevice(device_id));
|
|
}
|
|
|
|
void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
|
|
int boxes_dim, float nms_overlap_thresh, int device_id) {
|
|
_set_device(device_id);
|
|
|
|
float* boxes_dev = NULL;
|
|
unsigned long long* mask_dev = NULL;
|
|
|
|
const int col_blocks = DIVUP(boxes_num, threadsPerBlock);
|
|
|
|
CUDA_CHECK(cudaMalloc(&boxes_dev,
|
|
boxes_num * boxes_dim * sizeof(float)));
|
|
CUDA_CHECK(cudaMemcpy(boxes_dev,
|
|
boxes_host,
|
|
boxes_num * boxes_dim * sizeof(float),
|
|
cudaMemcpyHostToDevice));
|
|
|
|
CUDA_CHECK(cudaMalloc(&mask_dev,
|
|
boxes_num * col_blocks * sizeof(unsigned long long)));
|
|
|
|
dim3 blocks(DIVUP(boxes_num, threadsPerBlock),
|
|
DIVUP(boxes_num, threadsPerBlock));
|
|
dim3 threads(threadsPerBlock);
|
|
nms_kernel<<<blocks, threads>>>(boxes_num,
|
|
nms_overlap_thresh,
|
|
boxes_dev,
|
|
mask_dev);
|
|
|
|
std::vector<unsigned long long> mask_host(boxes_num * col_blocks);
|
|
CUDA_CHECK(cudaMemcpy(&mask_host[0],
|
|
mask_dev,
|
|
sizeof(unsigned long long) * boxes_num * col_blocks,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
std::vector<unsigned long long> remv(col_blocks);
|
|
memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
|
|
|
|
int num_to_keep = 0;
|
|
for (int i = 0; i < boxes_num; i++) {
|
|
int nblock = i / threadsPerBlock;
|
|
int inblock = i % threadsPerBlock;
|
|
|
|
if (!(remv[nblock] & (1ULL << inblock))) {
|
|
keep_out[num_to_keep++] = i;
|
|
unsigned long long *p = &mask_host[0] + i * col_blocks;
|
|
for (int j = nblock; j < col_blocks; j++) {
|
|
remv[j] |= p[j];
|
|
}
|
|
}
|
|
}
|
|
*num_out = num_to_keep;
|
|
|
|
CUDA_CHECK(cudaFree(boxes_dev));
|
|
CUDA_CHECK(cudaFree(mask_dev));
|
|
}
|