forked from TensorLayer/tensorlayer3
158 lines
5.6 KiB
Python
158 lines
5.6 KiB
Python
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
|
|
from config import cfg
|
|
import numpy as np
|
|
import numpy.random as npr
|
|
from bbox import bbox_overlaps
|
|
from bbox_transform import bbox_transform
|
|
|
|
def anchor_target_layer(rpn_cls_score, gt_boxes, im_info, _feat_stride, all_anchors, num_anchors):
|
|
"""Same as the anchor target layer in original Fast/er RCNN """
|
|
A = num_anchors
|
|
total_anchors = all_anchors.shape[0]
|
|
K = total_anchors / num_anchors
|
|
|
|
# allow boxes to sit over the edge by a small amount
|
|
_allowed_border = 0
|
|
|
|
# map of shape (..., H, W)
|
|
height, width = rpn_cls_score.shape[1:3]
|
|
|
|
# only keep anchors inside the image
|
|
inds_inside = np.where(
|
|
(all_anchors[:, 0] >= -_allowed_border) &
|
|
(all_anchors[:, 1] >= -_allowed_border) &
|
|
(all_anchors[:, 2] < im_info[1] + _allowed_border) & # width
|
|
(all_anchors[:, 3] < im_info[0] + _allowed_border) # height
|
|
)[0]
|
|
|
|
# keep only inside anchors
|
|
anchors = all_anchors[inds_inside, :]
|
|
|
|
# label: 1 is positive, 0 is negative, -1 is dont care
|
|
labels = np.empty((len(inds_inside),), dtype=np.float32)
|
|
labels.fill(-1)
|
|
|
|
# overlaps between the anchors and the gt boxes
|
|
# overlaps (ex, gt)
|
|
overlaps = bbox_overlaps(
|
|
np.ascontiguousarray(anchors, dtype=np.float),
|
|
np.ascontiguousarray(gt_boxes, dtype=np.float))
|
|
argmax_overlaps = overlaps.argmax(axis=1)
|
|
max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
|
|
gt_argmax_overlaps = overlaps.argmax(axis=0)
|
|
gt_max_overlaps = overlaps[gt_argmax_overlaps,
|
|
np.arange(overlaps.shape[1])]
|
|
gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]
|
|
|
|
if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
|
|
# assign bg labels first so that positive labels can clobber them
|
|
# first set the negatives
|
|
labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
|
|
|
|
# fg label: for each gt, anchor with highest overlap
|
|
labels[gt_argmax_overlaps] = 1
|
|
|
|
# fg label: above threshold IOU
|
|
labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1
|
|
|
|
if cfg.TRAIN.RPN_CLOBBER_POSITIVES:
|
|
# assign bg labels last so that negative labels can clobber positives
|
|
labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
|
|
|
|
# subsample positive labels if we have too many
|
|
num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
|
|
fg_inds = np.where(labels == 1)[0]
|
|
if len(fg_inds) > num_fg:
|
|
disable_inds = npr.choice(
|
|
fg_inds, size=(len(fg_inds) - num_fg), replace=False)
|
|
labels[disable_inds] = -1
|
|
|
|
# subsample negative labels if we have too many
|
|
num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1)
|
|
bg_inds = np.where(labels == 0)[0]
|
|
if len(bg_inds) > num_bg:
|
|
disable_inds = npr.choice(
|
|
bg_inds, size=(len(bg_inds) - num_bg), replace=False)
|
|
labels[disable_inds] = -1
|
|
|
|
bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)
|
|
bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])
|
|
|
|
bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
|
|
# only the positive ones have regression targets
|
|
bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS)
|
|
|
|
bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
|
|
if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
|
|
# uniform weighting of examples (given non-uniform sampling)
|
|
num_examples = np.sum(labels >= 0)
|
|
positive_weights = np.ones((1, 4)) * 1.0 / num_examples
|
|
negative_weights = np.ones((1, 4)) * 1.0 / num_examples
|
|
else:
|
|
assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
|
|
(cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
|
|
positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
|
|
np.sum(labels == 1))
|
|
negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
|
|
np.sum(labels == 0))
|
|
bbox_outside_weights[labels == 1, :] = positive_weights
|
|
bbox_outside_weights[labels == 0, :] = negative_weights
|
|
|
|
# map up to original set of anchors
|
|
labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
|
|
bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
|
|
bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)
|
|
bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)
|
|
|
|
# labels
|
|
labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2)
|
|
labels = labels.reshape((1, 1, A * height, width))
|
|
rpn_labels = labels
|
|
|
|
# bbox_targets
|
|
bbox_targets = bbox_targets \
|
|
.reshape((1, height, width, A * 4))
|
|
|
|
rpn_bbox_targets = bbox_targets
|
|
# bbox_inside_weights
|
|
bbox_inside_weights = bbox_inside_weights \
|
|
.reshape((1, height, width, A * 4))
|
|
|
|
rpn_bbox_inside_weights = bbox_inside_weights
|
|
|
|
# bbox_outside_weights
|
|
bbox_outside_weights = bbox_outside_weights \
|
|
.reshape((1, height, width, A * 4))
|
|
|
|
rpn_bbox_outside_weights = bbox_outside_weights
|
|
return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights
|
|
|
|
|
|
def _unmap(data, count, inds, fill=0):
|
|
""" Unmap a subset of item (data) back to the original set of items (of
|
|
size count) """
|
|
if len(data.shape) == 1:
|
|
ret = np.empty((count,), dtype=np.float32)
|
|
ret.fill(fill)
|
|
ret[inds] = data
|
|
else:
|
|
ret = np.empty((count,) + data.shape[1:], dtype=np.float32)
|
|
ret.fill(fill)
|
|
ret[inds, :] = data
|
|
return ret
|
|
|
|
|
|
def _compute_targets(ex_rois, gt_rois):
|
|
"""Compute bounding-box regression targets for an image."""
|
|
|
|
assert ex_rois.shape[0] == gt_rois.shape[0]
|
|
assert ex_rois.shape[1] == 4
|
|
assert gt_rois.shape[1] == 5
|
|
|
|
return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
|