forked from TensorLayer/tensorlayer3
193 lines
5.4 KiB
Python
193 lines
5.4 KiB
Python
"""Head meta objects contain meta information about head networks.
|
|
|
|
This includes the name, the name of the individual fields, the composition, etc.
|
|
"""
|
|
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, ClassVar, List, Tuple
|
|
|
|
import numpy as np
|
|
|
|
|
|
@dataclass
|
|
class Base:
|
|
name: str
|
|
dataset: str
|
|
|
|
head_index: int = field(default=None, init=False)
|
|
base_stride: int = field(default=None, init=False)
|
|
upsample_stride: int = field(default=1, init=False)
|
|
|
|
@property
|
|
def stride(self) -> int:
|
|
if self.base_stride is None:
|
|
return None
|
|
return self.base_stride // self.upsample_stride
|
|
|
|
@property
|
|
def n_fields(self) -> int:
|
|
raise NotImplementedError
|
|
|
|
|
|
@dataclass
|
|
class Cif(Base):
|
|
"""Head meta data for a Composite Intensity Field (CIF)."""
|
|
|
|
keypoints: List[str]
|
|
sigmas: List[float]
|
|
pose: Any = None
|
|
draw_skeleton: List[Tuple[int, int]] = None
|
|
score_weights: List[float] = None
|
|
|
|
n_confidences: ClassVar[int] = 1
|
|
n_vectors: ClassVar[int] = 1
|
|
n_scales: ClassVar[int] = 1
|
|
|
|
vector_offsets = [True]
|
|
decoder_min_scale = 0.0
|
|
decoder_seed_mask: List[int] = None
|
|
|
|
training_weights: List[float] = None
|
|
|
|
@property
|
|
def n_fields(self):
|
|
return len(self.keypoints)
|
|
|
|
|
|
@dataclass
|
|
class Caf(Base):
|
|
"""Head meta data for a Composite Association Field (CAF)."""
|
|
|
|
keypoints: List[str]
|
|
sigmas: List[float]
|
|
skeleton: List[Tuple[int, int]]
|
|
pose: Any = None
|
|
sparse_skeleton: List[Tuple[int, int]] = None
|
|
dense_to_sparse_radius: float = 2.0
|
|
only_in_field_of_view: bool = False
|
|
|
|
n_confidences: ClassVar[int] = 1
|
|
n_vectors: ClassVar[int] = 2
|
|
n_scales: ClassVar[int] = 2
|
|
|
|
vector_offsets = [True, True]
|
|
decoder_min_distance = 0.0
|
|
decoder_max_distance = float('inf')
|
|
decoder_confidence_scales: List[float] = None
|
|
|
|
training_weights: List[float] = None
|
|
|
|
@property
|
|
def n_fields(self):
|
|
return len(self.skeleton)
|
|
|
|
@staticmethod
|
|
def concatenate(metas):
|
|
# TODO: by keypoint name, update skeleton indices if meta.keypoints
|
|
# is not the same for all metas.
|
|
concatenated = Caf(
|
|
name='_'.join(m.name for m in metas),
|
|
dataset=metas[0].dataset,
|
|
keypoints=metas[0].keypoints,
|
|
sigmas=metas[0].sigmas,
|
|
pose=metas[0].pose,
|
|
skeleton=[s for meta in metas for s in meta.skeleton],
|
|
sparse_skeleton=metas[0].sparse_skeleton,
|
|
only_in_field_of_view=metas[0].only_in_field_of_view,
|
|
decoder_confidence_scales=[
|
|
s
|
|
for meta in metas
|
|
for s in (meta.decoder_confidence_scales
|
|
if meta.decoder_confidence_scales
|
|
else [1.0 for _ in meta.skeleton])
|
|
]
|
|
)
|
|
concatenated.head_index = metas[0].head_index
|
|
concatenated.base_stride = metas[0].base_stride
|
|
concatenated.upsample_stride = metas[0].upsample_stride
|
|
return concatenated
|
|
|
|
|
|
@dataclass
|
|
class CifDet(Base):
|
|
"""Head meta data for a Composite Intensity Field (CIF) for Detection."""
|
|
|
|
categories: List[str]
|
|
|
|
n_confidences: ClassVar[int] = 1
|
|
n_vectors: ClassVar[int] = 2
|
|
n_scales: ClassVar[int] = 0
|
|
|
|
vector_offsets = [True, False]
|
|
decoder_min_scale = 0.0
|
|
|
|
training_weights: List[float] = None
|
|
|
|
@property
|
|
def n_fields(self):
|
|
return len(self.categories)
|
|
|
|
|
|
@dataclass
|
|
class TSingleImageCif(Cif):
|
|
"""Single-Image CIF head in tracking models."""
|
|
|
|
|
|
@dataclass
|
|
class TSingleImageCaf(Caf):
|
|
"""Single-Image CAF head in tracking models."""
|
|
|
|
|
|
@dataclass
|
|
class Tcaf(Base):
|
|
"""Tracking Composite Association Field."""
|
|
|
|
keypoints_single_frame: List[str]
|
|
sigmas_single_frame: List[float]
|
|
pose_single_frame: Any
|
|
draw_skeleton_single_frame: List[Tuple[int, int]] = None
|
|
keypoints: List[str] = None
|
|
sigmas: List[float] = None
|
|
pose: Any = None
|
|
draw_skeleton: List[Tuple[int, int]] = None
|
|
only_in_field_of_view: bool = False
|
|
|
|
n_confidences: ClassVar[int] = 1
|
|
n_vectors: ClassVar[int] = 2
|
|
n_scales: ClassVar[int] = 2
|
|
|
|
training_weights: List[float] = None
|
|
|
|
vector_offsets = [True, True]
|
|
|
|
def __post_init__(self):
|
|
if self.keypoints is None:
|
|
self.keypoints = np.concatenate((
|
|
self.keypoints_single_frame,
|
|
self.keypoints_single_frame,
|
|
), axis=0)
|
|
if self.sigmas is None:
|
|
self.sigmas = np.concatenate((
|
|
self.sigmas_single_frame,
|
|
self.sigmas_single_frame,
|
|
), axis=0)
|
|
if self.pose is None:
|
|
self.pose = np.concatenate((
|
|
self.pose_single_frame,
|
|
self.pose_single_frame,
|
|
), axis=0)
|
|
if self.draw_skeleton is None:
|
|
self.draw_skeleton = np.concatenate((
|
|
self.draw_skeleton_single_frame,
|
|
self.draw_skeleton_single_frame,
|
|
), axis=0)
|
|
|
|
@property
|
|
def skeleton(self):
|
|
return [(i + 1, i + 1 + len(self.keypoints_single_frame))
|
|
for i, _ in enumerate(self.keypoints_single_frame)]
|
|
|
|
@property
|
|
def n_fields(self):
|
|
return len(self.keypoints_single_frame)
|