circt/lib/Dialect/Sim/SimOps.cpp

407 lines
14 KiB
C++

//===- SimOps.cpp - Implement the Sim operations ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements `sim` dialect ops.
//
//===----------------------------------------------------------------------===//
#include "circt/Dialect/Sim/SimOps.h"
#include "circt/Dialect/HW/ModuleImplementation.h"
#include "circt/Dialect/SV/SVOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/FunctionImplementation.h"
#include "llvm/ADT/MapVector.h"
using namespace mlir;
using namespace circt;
using namespace sim;
ParseResult DPIFuncOp::parse(OpAsmParser &parser, OperationState &result) {
auto builder = parser.getBuilder();
// Parse visibility.
(void)mlir::impl::parseOptionalVisibilityKeyword(parser, result.attributes);
// Parse the name as a symbol.
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
SmallVector<hw::module_like_impl::PortParse> ports;
TypeAttr modType;
if (failed(
hw::module_like_impl::parseModuleSignature(parser, ports, modType)))
return failure();
result.addAttribute(DPIFuncOp::getModuleTypeAttrName(result.name), modType);
// Convert the specified array of dictionary attrs (which may have null
// entries) to an ArrayAttr of dictionaries.
auto unknownLoc = builder.getUnknownLoc();
SmallVector<Attribute> attrs, locs;
auto nonEmptyLocsFn = [unknownLoc](Attribute attr) {
return attr && cast<Location>(attr) != unknownLoc;
};
for (auto &port : ports) {
attrs.push_back(port.attrs ? port.attrs : builder.getDictionaryAttr({}));
locs.push_back(port.sourceLoc ? Location(*port.sourceLoc) : unknownLoc);
}
result.addAttribute(DPIFuncOp::getPerArgumentAttrsAttrName(result.name),
builder.getArrayAttr(attrs));
result.addRegion();
if (llvm::any_of(locs, nonEmptyLocsFn))
result.addAttribute(DPIFuncOp::getArgumentLocsAttrName(result.name),
builder.getArrayAttr(locs));
// Parse the attribute dict.
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
return failure();
return success();
}
LogicalResult
sim::DPICallOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto referencedOp =
symbolTable.lookupNearestSymbolFrom(*this, getCalleeAttr());
if (!referencedOp)
return emitError("cannot find function declaration '")
<< getCallee() << "'";
if (isa<func::FuncOp, sim::DPIFuncOp>(referencedOp))
return success();
return emitError("callee must be 'sim.dpi.func' or 'func.func' but got '")
<< referencedOp->getName() << "'";
}
void DPIFuncOp::print(OpAsmPrinter &p) {
DPIFuncOp op = *this;
// Print the operation and the function name.
auto funcName =
op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName())
.getValue();
p << ' ';
StringRef visibilityAttrName = SymbolTable::getVisibilityAttrName();
if (auto visibility = op->getAttrOfType<StringAttr>(visibilityAttrName))
p << visibility.getValue() << ' ';
p.printSymbolName(funcName);
hw::module_like_impl::printModuleSignatureNew(
p, op->getRegion(0), op.getModuleType(),
getPerArgumentAttrsAttr()
? ArrayRef<Attribute>(getPerArgumentAttrsAttr().getValue())
: ArrayRef<Attribute>{},
getArgumentLocs() ? SmallVector<Location>(
getArgumentLocs().value().getAsRange<Location>())
: ArrayRef<Location>{});
mlir::function_interface_impl::printFunctionAttributes(
p, op,
{visibilityAttrName, getModuleTypeAttrName(),
getPerArgumentAttrsAttrName(), getArgumentLocsAttrName()});
}
OpFoldResult FormatLitOp::fold(FoldAdaptor adaptor) { return getLiteralAttr(); }
OpFoldResult FormatDecOp::fold(FoldAdaptor adaptor) {
if (getValue().getType() == IntegerType::get(getContext(), 0U))
return StringAttr::get(getContext(), "0");
if (auto intAttr = llvm::dyn_cast_or_null<IntegerAttr>(adaptor.getValue())) {
SmallVector<char, 16> strBuf;
intAttr.getValue().toString(strBuf, 10U, getIsSigned());
unsigned width = intAttr.getType().getIntOrFloatBitWidth();
unsigned padWidth = FormatDecOp::getDecimalWidth(width, getIsSigned());
padWidth = padWidth > strBuf.size() ? padWidth - strBuf.size() : 0;
SmallVector<char, 8> padding(padWidth, ' ');
return StringAttr::get(getContext(), Twine(padding) + Twine(strBuf));
}
return {};
}
OpFoldResult FormatHexOp::fold(FoldAdaptor adaptor) {
if (getValue().getType() == IntegerType::get(getContext(), 0U))
return StringAttr::get(getContext(), "");
if (auto intAttr = llvm::dyn_cast_or_null<IntegerAttr>(adaptor.getValue())) {
SmallVector<char, 8> strBuf;
intAttr.getValue().toString(strBuf, 16U, /*Signed*/ false,
/*formatAsCLiteral*/ false,
/*UpperCase*/ false);
unsigned width = intAttr.getType().getIntOrFloatBitWidth();
unsigned padWidth = width / 4;
if (width % 4 != 0)
padWidth++;
padWidth = padWidth > strBuf.size() ? padWidth - strBuf.size() : 0;
SmallVector<char, 8> padding(padWidth, '0');
return StringAttr::get(getContext(), Twine(padding) + Twine(strBuf));
}
return {};
}
OpFoldResult FormatBinOp::fold(FoldAdaptor adaptor) {
if (getValue().getType() == IntegerType::get(getContext(), 0U))
return StringAttr::get(getContext(), "");
if (auto intAttr = llvm::dyn_cast_or_null<IntegerAttr>(adaptor.getValue())) {
SmallVector<char, 32> strBuf;
intAttr.getValue().toString(strBuf, 2U, false);
unsigned width = intAttr.getType().getIntOrFloatBitWidth();
unsigned padWidth = width > strBuf.size() ? width - strBuf.size() : 0;
SmallVector<char, 32> padding(padWidth, '0');
return StringAttr::get(getContext(), Twine(padding) + Twine(strBuf));
}
return {};
}
OpFoldResult FormatCharOp::fold(FoldAdaptor adaptor) {
auto width = getValue().getType().getIntOrFloatBitWidth();
if (width > 8)
return {};
if (width == 0)
return StringAttr::get(getContext(), Twine(static_cast<char>(0)));
if (auto intAttr = llvm::dyn_cast_or_null<IntegerAttr>(adaptor.getValue())) {
auto intValue = intAttr.getValue().getZExtValue();
return StringAttr::get(getContext(), Twine(static_cast<char>(intValue)));
}
return {};
}
static StringAttr concatLiterals(MLIRContext *ctxt, ArrayRef<StringRef> lits) {
assert(!lits.empty() && "No literals to concatenate");
if (lits.size() == 1)
return StringAttr::get(ctxt, lits.front());
SmallString<64> newLit;
for (auto lit : lits)
newLit += lit;
return StringAttr::get(ctxt, newLit);
}
OpFoldResult FormatStringConcatOp::fold(FoldAdaptor adaptor) {
if (getNumOperands() == 0)
return StringAttr::get(getContext(), "");
if (getNumOperands() == 1) {
// Don't fold to our own result to avoid an infinte loop.
if (getResult() == getOperand(0))
return {};
return getOperand(0);
}
// Fold if all operands are literals.
SmallVector<StringRef> lits;
for (auto attr : adaptor.getInputs()) {
auto lit = dyn_cast_or_null<StringAttr>(attr);
if (!lit)
return {};
lits.push_back(lit);
}
return concatLiterals(getContext(), lits);
}
LogicalResult FormatStringConcatOp::getFlattenedInputs(
llvm::SmallVectorImpl<Value> &flatOperands) {
llvm::SmallMapVector<FormatStringConcatOp, unsigned, 4> concatStack;
bool isCyclic = false;
// Perform a DFS on this operation's concatenated operands,
// collect the leaf format string fragments.
concatStack.insert({*this, 0});
while (!concatStack.empty()) {
auto &top = concatStack.back();
auto currentConcat = top.first;
unsigned operandIndex = top.second;
// Iterate over concatenated operands
while (operandIndex < currentConcat.getNumOperands()) {
auto currentOperand = currentConcat.getOperand(operandIndex);
if (auto nextConcat =
currentOperand.getDefiningOp<FormatStringConcatOp>()) {
// Concat of a concat
if (!concatStack.contains(nextConcat)) {
// Save the next operand index to visit on the
// stack and put the new concat on top.
top.second = operandIndex + 1;
concatStack.insert({nextConcat, 0});
break;
}
// Cyclic concatenation encountered. Don't recurse.
isCyclic = true;
}
flatOperands.push_back(currentOperand);
operandIndex++;
}
// Pop the concat off of the stack if we have visited all operands.
if (operandIndex >= currentConcat.getNumOperands())
concatStack.pop_back();
}
return success(!isCyclic);
}
LogicalResult FormatStringConcatOp::verify() {
if (llvm::any_of(getOperands(),
[&](Value operand) { return operand == getResult(); }))
return emitOpError("is infinitely recursive.");
return success();
}
LogicalResult FormatStringConcatOp::canonicalize(FormatStringConcatOp op,
PatternRewriter &rewriter) {
auto fmtStrType = FormatStringType::get(op.getContext());
// Check if we can flatten concats of concats
bool hasBeenFlattened = false;
SmallVector<Value, 0> flatOperands;
if (!op.isFlat()) {
// Get a new, flattened list of operands
flatOperands.reserve(op.getNumOperands() + 4);
auto isAcyclic = op.getFlattenedInputs(flatOperands);
if (failed(isAcyclic)) {
// Infinite recursion, but we cannot fail compilation right here (can we?)
// so just emit a warning and bail out.
op.emitWarning("Cyclic concatenation detected.");
return failure();
}
hasBeenFlattened = true;
}
if (!hasBeenFlattened && op.getNumOperands() < 2)
return failure(); // Should be handled by the folder
// Check if there are adjacent literals we can merge or empty literals to
// remove
SmallVector<StringRef> litSequence;
SmallVector<Value> newOperands;
newOperands.reserve(op.getNumOperands());
FormatLitOp prevLitOp;
auto oldOperands = hasBeenFlattened ? flatOperands : op.getOperands();
for (auto operand : oldOperands) {
if (auto litOp = operand.getDefiningOp<FormatLitOp>()) {
if (!litOp.getLiteral().empty()) {
prevLitOp = litOp;
litSequence.push_back(litOp.getLiteral());
}
} else {
if (!litSequence.empty()) {
if (litSequence.size() > 1) {
// Create a fused literal.
auto newLit = rewriter.createOrFold<FormatLitOp>(
op.getLoc(), fmtStrType,
concatLiterals(op.getContext(), litSequence));
newOperands.push_back(newLit);
} else {
// Reuse the existing literal.
newOperands.push_back(prevLitOp.getResult());
}
litSequence.clear();
}
newOperands.push_back(operand);
}
}
// Push trailing literals into the new operand list
if (!litSequence.empty()) {
if (litSequence.size() > 1) {
// Create a fused literal.
auto newLit = rewriter.createOrFold<FormatLitOp>(
op.getLoc(), fmtStrType,
concatLiterals(op.getContext(), litSequence));
newOperands.push_back(newLit);
} else {
// Reuse the existing literal.
newOperands.push_back(prevLitOp.getResult());
}
}
if (!hasBeenFlattened && newOperands.size() == op.getNumOperands())
return failure(); // Nothing changed
if (newOperands.empty())
rewriter.replaceOpWithNewOp<FormatLitOp>(op, fmtStrType,
rewriter.getStringAttr(""));
else if (newOperands.size() == 1)
rewriter.replaceOp(op, newOperands);
else
rewriter.modifyOpInPlace(op, [&]() { op->setOperands(newOperands); });
return success();
}
LogicalResult PrintFormattedOp::canonicalize(PrintFormattedOp op,
PatternRewriter &rewriter) {
// Remove ops with constant false condition.
if (auto cstCond = op.getCondition().getDefiningOp<hw::ConstantOp>()) {
if (cstCond.getValue().isZero()) {
rewriter.eraseOp(op);
return success();
}
}
return failure();
}
LogicalResult PrintFormattedProcOp::verify() {
// Check if we know for sure that the parent is not procedural.
auto *parentOp = getOperation()->getParentOp();
if (!parentOp)
return emitOpError("must be within a procedural region.");
if (isa<hw::HWDialect>(parentOp->getDialect())) {
if (!isa<hw::TriggeredOp>(parentOp))
return emitOpError("must be within a procedural region.");
return success();
}
if (isa<sv::SVDialect>(parentOp->getDialect())) {
if (!parentOp->hasTrait<sv::ProceduralRegion>())
return emitOpError("must be within a procedural region.");
return success();
}
// Don't fail for dialects that are not explicitly handled.
return success();
}
LogicalResult PrintFormattedProcOp::canonicalize(PrintFormattedProcOp op,
PatternRewriter &rewriter) {
// Remove empty prints.
if (auto litInput = op.getInput().getDefiningOp<FormatLitOp>()) {
if (litInput.getLiteral().empty()) {
rewriter.eraseOp(op);
return success();
}
}
return failure();
}
//===----------------------------------------------------------------------===//
// TableGen generated logic.
//===----------------------------------------------------------------------===//
// Provide the autogenerated implementation guts for the Op classes.
#define GET_OP_CLASSES
#include "circt/Dialect/Sim/Sim.cpp.inc"