atom-predict/msunet/.ipynb_checkpoints/inference-checkpoint.py

134 lines
3.7 KiB
Python
Executable File

import os
import json
import glob
import torch
torch.set_float32_matmul_precision('high')
import numpy as np
from sklearn.utils import shuffle
from sklearn.model_selection import KFold
from torch import nn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
import pytorch_lightning as pl
from core.model import *
from core.data import *
from core.metrics import *
# constants
DATASETS = 'TEM'
GPUS = 1
SIGMA = 3
BS = 16
RF = 0.9
NW = 4
WD = 1e-5
LR = 3e-4
DIM = 256
EPOCHS = 1000
IN_CHANNELS = 3
SAVE_TOP_K = 1
TTA = 8
EARLY_STOP = 20
EVERY_N_EPOCHS = 1
LOG_EVERY_N_STEPS = 1
WEIGHTS = torch.FloatTensor([1./64, 1./16., 1./4, 1.])
IMAGE_PATH = '/home/andrewtal/Workspace/metrials/v15_Final/data/infer/patch'
# pytorch lightning module
class FCRN(pl.LightningModule):
def __init__(self, in_channels):
super().__init__()
self.fcrn = C_FCRN_Aux(in_channels)
self.loss = MyLoss(WEIGHTS)
def forward(self, x):
out = self.fcrn(x)
return out
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=LR, weight_decay=WD)
scheduler = ReduceLROnPlateau(optimizer, factor=RF, mode='min', patience=4, min_lr=0, verbose=True)
# patience=10
return {
'optimizer': optimizer,
'lr_scheduler': scheduler,
'monitor': 'val_mce'
}
def training_step(self, train_batch, batch_idx):
x, d1, d2, d3, d4 = train_batch
y = [d1, d2, d3, d4]
pd = self.fcrn(x)
loss = self.loss(pd, y)
train_mce = mce(pd, y)
self.log('train_loss', loss)
self.log('train_mce', train_mce, on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self, val_batch, batch_idx):
x, d1, d2, d3, d4 = val_batch
y = [d1, d2, d3, d4]
pd = self.fcrn(x)
loss = self.loss(pd, y)
val_mce = mce(pd, y)
self.log('val_loss', loss)
self.log('val_mce', val_mce, on_epoch=True, prog_bar=True, logger=True)
def predict_step(self, batch, batch_idx):
x, _, _, _, d4 = batch
pred = self.fcrn(x)[-1]
return pred, d4
# main
if __name__ == '__main__':
infer_img_list = np.array(glob.glob('{}/*.jpg'.format(IMAGE_PATH))).tolist()
infer_dataset = MyDataset(infer_img_list, dim=DIM, sigma=SIGMA, data_type='test')
infer_loader = DataLoader(
dataset = infer_dataset,
batch_size = BS,
shuffle = False,
num_workers = NW,
)
model = FCRN(IN_CHANNELS)
# training
trainer = pl.Trainer(
accelerator = 'gpu',
devices = GPUS,
max_epochs = EPOCHS,
logger = False,
)
# inference
for i in range(TTA):
predictions = trainer.predict(
model = model,
dataloaders = infer_loader,
ckpt_path = '/home/andrewtal/Workspace/metrials/v15_Final/code/fcrn/lightning_logs/TEM/version_0/checkpoints/best.ckpt'
)
preds = torch.squeeze(torch.concat([item[0] for item in predictions])).numpy().tolist()
labels = torch.squeeze(torch.concat([item[1] for item in predictions])).numpy().tolist()
results ={
'img_path': infer_img_list,
'pred': preds,
'label': labels,
}
results_json = json.dumps(results)
with open(os.path.join(trainer.log_dir, 'infer_patch_{}.json'.format(str(i))), 'w+') as f:
f.write(results_json)