atom-predict/egnn_v2/stastic_center_v6_var.py

221 lines
7.3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
import matplotlib.pyplot as plt
from egnn_core.data import load_data_v3,load_data_v6
import os
import json
from skimage.feature import graycomatrix
#根据连接来遍历点的表
#第一步,遍历edge index.T里面的第一列对应的点的序号[:,0]
#第二步,根据序号去找对应的label是否为普通,即0,如果等于0进入下一步,不然跳过;这一步是为了排除掉非普通原子的
#第三步,判断普通的原子的邻居是不是也是普通的:
#先找edge index.T里面的第一列对应的点的序号[:,1],即邻居有哪些
#去判断这些邻居有多少个属于线缺陷,即label是2,并计数
#记住,此时要把该点从表中永远排除,避免重复技术
# edge_index = np.array([[1, 3], [4, 5], [1, 7], [1, 10]])
# labels = np.array([0,0,0,2,0,2,0,2,0,0,2])
# 指定文件夹路径
folder_path = '/home/gao/mouclear/analyze_center/new+label'
img_size = 2048
# target_size = [150,200]
target_size = [165,185]
def calculate_entropy(image):
hist, _ = np.histogram(image, bins=range(256), range=(0, 255))
probabilities = hist / np.sum(hist)
entropy = -np.sum(probabilities[probabilities > 0] * np.log2(probabilities[probabilities > 0]))
return entropy
def calculate_mean_entropy(image):
# 确定图像的尺寸
height, width = image.shape
# 计算每块的大小
block_height = height // 2
block_width = width // 2
# 初始化熵列表
entropies = []
# 计算四块的熵
for i in range(2):
for j in range(2):
# 计算区域的坐标
start_row, end_row = i * block_height, (i + 1) * block_height
start_col, end_col = j * block_width, (j + 1) * block_width
# 提取区域
region = image[start_row:end_row, start_col:end_col]
# 计算熵并添加到列表
entropies.append(calculate_entropy(region))
# 计算熵的均值和方差
mean_entropy = np.mean(entropies)
variance_entropy = np.var(entropies)
return mean_entropy, variance_entropy
def calculate_entropy_v2(image, distances=[1], angles=[0], levels=256, return_matrix=False):
"""
计算基于灰度共生矩阵的熵。
参数:
- image: 二维NumPy数组表示灰度图像。
- distances: 考虑的像素距离。
- angles: 考虑的角度可以是0, 90, 135, 45度。
- levels: 灰度级别数量默认为256。
- return_matrix: 是否返回灰度共生矩阵默认为False。
返回:
- entropy: 熵值。
- glcm (如果return_matrix为True): 灰度共生矩阵。
"""
# 确保image是uint8类型
image = image.astype(np.uint8)
# 计算灰度共生矩阵
glcm = graycomatrix(image, distances, angles, levels, symmetric=True, normed=True)
# 创建一个与glcm形状相同的掩码用于过滤零概率值
mask = glcm > 0
# 计算每个GLCM的熵只对非零概率值进行计算
glcm_entropy = -np.sum(glcm * np.log2(glcm) * mask, axis=1) / np.sum(mask, axis=1)
# 取平均熵作为图像的熵
entropy = np.mean(glcm_entropy[glcm_entropy > 0]) # 排除NaN值
#
# # 计算每个GLCM的熵
# glcm_prob = glcm / np.sum(glcm)
# glcm_entropy = -np.sum(glcm_prob * np.log2(glcm_prob), axis=1)
# 取平均熵作为图像的熵
# entropy = np.mean(glcm_entropy)
if return_matrix:
return entropy, glcm
else:
return entropy
def process_json_file(json_file):
json_filename = os.path.basename(json_file)
json_filename_without_ext = os.path.splitext(json_filename)[0]
image_filename = f"{json_filename_without_ext}.png"
points, edge_index, labels, lights = load_data_v6(json_file) # 假设这是你的数据加载函数
graph_index = np.where(labels == 3)
center_index = np.where(labels == 4)
vacancy = np.where(labels == 5)
combined_index = np.array(center_index[0].tolist() + graph_index[0].tolist() + vacancy[0].tolist())
# print(len(combined_index))
selected_point = []
selected_light = []
selected_label = []
for i in combined_index:
selected_point.append(points[i])
selected_light.append(lights[i])
selected_label.append(labels[i])
selected_point = np.array(selected_point)
selected_light = np.array(selected_light)
selected_label = np.array(selected_label)
bg = np.zeros((img_size, img_size))
plt.figure(figsize=(9, 9))
for label, point in zip(selected_label, selected_point):
img_h, img_w = bg.shape # 背景图像的高度和宽度
h, w = point
ps = 1 # 因为 light 是 3x3 的区域,所以 ps 应该是 1
hs = np.clip(h - ps, 0, img_h - ps - 1)
ws = np.clip(w - ps, 0, img_w - ps - 1)
he = hs + 2 * ps + 1 # 3x3 区域的结束行索引
we = ws + 2 * ps + 1 # 3x3 区域的结束列索引
if label == 3:
array_3x3 = np.full((3, 3), 200)
if label == 4:
if json_filename_without_ext !='2_2':
array_3x3 = np.full((3,3), 50)
else:
array_3x3 = np.full((3, 3), 200)
if label == 5:
array_3x3 = np.full((3, 3), 50)
# 绘制到背景图像上
bg[hs:he, ws:we] = array_3x3
# 绘制完所有 light 后,找到被修改的区域
modified_rows, modified_cols = np.where(bg != 0)
# 计算最小和最大索引,以确定被修改区域的范围
min_row, max_row = min(modified_rows), max(modified_rows)
min_col, max_col = min(modified_cols), max(modified_cols)
# 计算需要裁剪的边界,以保持统一尺寸
pad_height = max_row - min_row
pad_width = max_col - min_col
pad_top = (target_size[0] - pad_height) // 2
pad_left = (target_size[1] - pad_width) // 2
# 确保裁剪尺寸不超出原始图片尺寸
pad_top = min(pad_top, img_size - max_row)
pad_left = min(pad_left, img_size - max_col)
# 裁剪背景图像,只保留被修改的区域,并添加边界以保持统一尺寸
cropped_bg = bg[
min_row - pad_top:min_row - pad_top + target_size[0],
min_col - pad_left:min_col - pad_left + target_size[1]
]
# 裁剪背景图像,只保留被修改的区域
# cropped_bg = bg[min_row-1:max_row + 1, min_col-1:max_col + 1]
# 绘制裁剪后的背景图像
plt.figure(figsize=(9, 9))
plt.imshow(cropped_bg, cmap='gray') # 使用 'nearest' 插值以保持像素的完整性
plt.axis('off')
plt.tight_layout()
plt.savefig(image_filename, bbox_inches='tight', pad_inches=0)
plt.close() # 关闭绘图以释放资源
# 计算 bg 图像的熵
# entropy = calculate_entropy(cropped_bg)
# print(f"The entropy of the image is: {entropy}")
# entropy = calculate_entropy_v2(cropped_bg)
# print("灰度共生矩阵的熵:", entropy)
mean_entropy, variance_entropy = calculate_mean_entropy(cropped_bg)
print(f"熵的均值: {mean_entropy}")
print(f"熵的方差: {variance_entropy}")
# 可以选择再次显示图像和熵值
plt.imshow(cropped_bg, cmap='gray')
# plt.title(f"Image Entropy: {entropy}")
plt.axis('off')
plt.show()
# 遍历文件夹中的所有文件
for filename in os.listdir(folder_path):
if filename.endswith('.json'):
print(filename)
json_file = os.path.join(folder_path, filename)
process_json_file(json_file)