atom-predict/egnn_v2/egnn_core/metrics.py

39 lines
1.2 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.metrics import f1_score, confusion_matrix, accuracy_score
# def f1(y_pred, y_true):
# y_pred = torch.argmax(y_pred, axis=1)
# score = f1_score(y_true.cpu().numpy(), y_pred.cpu().numpy())
# return score
def acc(y_pred, y_true):
y_pred = torch.argmax(y_pred, axis=1)
score = accuracy_score(y_true.cpu().numpy(), y_pred.cpu().numpy())
return score
class LabelSmoothingCrossEntropy(nn.Module):
"""
NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.05):
"""
Constructor for the LabelSmoothing module.
:param smoothing: label smoothing factor
"""
super(LabelSmoothingCrossEntropy, self).__init__()
assert smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1. - smoothing
def forward(self, x, target):
logprobs = F.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()