300 lines
7.7 KiB
Plaintext
300 lines
7.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "b7f09d7e-dc1e-4962-a031-0a55e5b67a90",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import cv2\n",
|
|
"import glob\n",
|
|
"import json\n",
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"from tqdm import tqdm\n",
|
|
"from PIL import Image\n",
|
|
"from utils.e2e_metrics import get_metrics\n",
|
|
"from core.data import get_y_3\n",
|
|
"from core.data import load_data\n",
|
|
"from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score, confusion_matrix"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bde4590a-e868-4668-8b88-9b7ae6741c02",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Update Class"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "7aaf0964-d720-4d61-bf66-4e21d58d8c9c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"class_dict = {\n",
|
|
" 1: 'Norm', \n",
|
|
" 2: 'SV',\n",
|
|
" 3: 'LineSV',\n",
|
|
"}\n",
|
|
"\n",
|
|
"class_dict_rev = {\n",
|
|
" 'Norm': 1, \n",
|
|
" 'SV': 2,\n",
|
|
" 'LineSV': 3,\n",
|
|
"}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "41873800-6b74-4fa4-8c8b-3cecd7089518",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"8"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"with open('./logs/0/version_0/e2e.json') as f:\n",
|
|
" data = json.load(f)\n",
|
|
"\n",
|
|
"name = np.array(data['name'])\n",
|
|
"pred = np.argmax(np.array(data['pred']), axis=1)\n",
|
|
"pred_dict = dict(zip(name, pred))\n",
|
|
"\n",
|
|
"json_lst = glob.glob('../../data/linesv/gnn_data/e2e/raw/*.json', recursive=True); len(json_lst)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "b002854a-b36e-4423-a016-dd088a344681",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:17<00:00, 2.17s/it]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"for json_path in tqdm(json_lst):\n",
|
|
" base_name = json_path.split('/')[-1].split('.')[0]\n",
|
|
" points, edge_index, _, _ = load_data(json_path)\n",
|
|
" labels = np.array([pred_dict['{}_{}'.format(base_name, '_'.join(np.array(point, np.str_)))] for point in points])\n",
|
|
" \n",
|
|
" with open(json_path) as f:\n",
|
|
" data = json.load(f)\n",
|
|
"\n",
|
|
" for i in range(len(labels)):\n",
|
|
" data['shapes'][i]['label'] = class_dict[labels[i] + 1]\n",
|
|
" \n",
|
|
" with open(json_path, 'w') as f:\n",
|
|
" json.dump(data, f)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ac107f45-f949-4fcd-8950-9235b23d07ba",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Metrics"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "139d5824-cf33-45d4-8fce-e525245295ea",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"8"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"json_lst = glob.glob('../../data/linesv/gnn_data/e2e/raw/*.json', recursive=True); len(json_lst)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "8ccaf1cb-0202-4f92-9757-ba2eaf6be30a",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [02:21<00:00, 17.73s/it]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"res = []\n",
|
|
"\n",
|
|
"for json_path in tqdm(json_lst):\n",
|
|
" base_name = json_path.split('/')[-1].split('.')[0]\n",
|
|
" points, edge_index, labels, _ = load_data(json_path)\n",
|
|
" \n",
|
|
" mask_pd = np.zeros((2048, 2048))\n",
|
|
" mask_pd[points[:, 0], points[:, 1]] = labels + 1\n",
|
|
" mask_pd = np.array(mask_pd, np.uint8)\n",
|
|
" \n",
|
|
" mask_gt = np.array(Image.open(json_path.replace('.json', '.png')), np.uint8)\n",
|
|
" \n",
|
|
" for i in range(1, 4):\n",
|
|
" res += [get_metrics(mask_gt == i, mask_pd == i)]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "cca8debf-9de3-4473-a7eb-bd3ca8884a2e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"res = np.array(res)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "5d92bb3b-e3c2-4373-8ae1-2bbdc901476b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([0.99363791, 0.99729265, 0.99546084])"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Norm\n",
|
|
"np.mean(res[::3, :], axis=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "995b9bab-768c-47e2-9199-91fa3572380b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([0.70249967, 0.93076288, 0.79977477])"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# SV\n",
|
|
"np.mean(res[1::3, :], axis=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "34a00da7-8576-4102-a3a8-e78e15db0d45",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([0.95990162, 0.82609145, 0.88743022])"
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# LineSV\n",
|
|
"np.mean(res[2::3, :], axis=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "4926aea8-b9d2-4878-b8db-5f676d067bc1",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([0.8853464 , 0.918049 , 0.89422194])"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"np.mean(res, axis=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "24043672-21c7-40ef-91a1-5c612cfd6c78",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "cmae",
|
|
"language": "python",
|
|
"name": "cmae"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|