atom-predict/msunet/.ipynb_checkpoints/Params-checkpoint.ipynb

146 lines
3.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "b255d360-ca4b-4bce-ae31-cd51f80565dc",
"metadata": {},
"outputs": [],
"source": [
"import glob\n",
"import time\n",
"import timm\n",
"import torch\n",
"import collections\n",
"import torch.nn as nn\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from torchinfo import summary as ts\n",
"\n",
"from thop import profile\n",
"from sklearn.manifold import TSNE\n",
"\n",
"from core.model import *\n",
"from core.data import *\n",
"from core.metrics import *\n",
"\n",
"from torch_geometric.loader import DataLoader\n",
"from torch_geometric.nn import summary as nns\n",
"\n",
"import torch.nn as nn"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d6f9b93a-d572-459e-aee5-355dcc32105e",
"metadata": {},
"outputs": [],
"source": [
"model = C_FCRN_Aux(3).cuda().eval()\n",
"x = torch.randn(128, 3, 256, 256).cuda()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "95fb5b20-95cd-4959-aa43-00a27769db5e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>.\n",
"[INFO] Register count_normalization() for <class 'torch.nn.modules.batchnorm.BatchNorm2d'>.\n",
"[INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>.\n",
"[INFO] Register zero_ops() for <class 'torch.nn.modules.pooling.MaxPool2d'>.\n",
"[INFO] Register count_upsample() for <class 'torch.nn.modules.upsampling.Upsample'>.\n",
"flops: 1095388.63 M, params: 1.76 M\n"
]
}
],
"source": [
"flops, params = profile(model, (x,))\n",
"print('flops: %.2f M, params: %.2f M' % (flops / 1000000.0, params / 1000000.0))"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "4a3cdf93-12a6-4d81-b32d-bcc4a47cb369",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.2345220708847046"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"0.1172610354423523 * 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fd7ce75e-85da-4366-a02c-cbe81b63fa43",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "469ac150-f997-43af-8ea7-8fa8dfbd9663",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "20426ce9-d7ab-4275-86ab-8dd09793c9c0",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ef8396c-41b7-444c-89bb-9652caac5bda",
"metadata": {},
"outputs": [],
"source": [
"model"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "cmae",
"language": "python",
"name": "cmae"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}