quantum-espresso/PH/set_irr.f90

320 lines
9.1 KiB
Fortran

!
! Copyright (C) 2001-2003 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
#include "f_defs.h"
!
!---------------------------------------------------------------------
subroutine set_irr (nat, at, bg, xq, s, invs, nsym, rtau, irt, &
irgq, nsymq, minus_q, irotmq, t, tmq, max_irr_dim, u, npert, &
nirr, gi, gimq, iverbosity)
!---------------------------------------------------------------------
!
! This subroutine computes a basis for all the irreducible
! representations of the small group of q, which are contained
! in the representation which has as basis the displacement vectors.
! This is achieved by building a random hermitean matrix,
! symmetrizing it and diagonalizing the result. The eigenvectors
! give a basis for the irreducible representations of the
! small group of q.
!
! Furthermore it computes:
! 1) the small group of q
! 2) the possible G vectors associated to every symmetry operation
! 3) the matrices which represent the small group of q on the
! pattern basis.
!
! Original routine was from C. Bungaro.
! Revised Oct. 1995 by Andrea Dal Corso.
! April 1997: parallel stuff added (SdG)
!
USE io_global, ONLY : stdout
USE kinds, only : DP
USE constants, ONLY: tpi
USE random_numbers, ONLY : set_rndm_seed
#ifdef __PARA
use mp, only: mp_bcast
#endif
implicit none
!
! first the dummy variables
!
integer :: nat, nsym, s (3, 3, 48), invs (48), irt (48, nat), &
iverbosity, npert (3 * nat), irgq (48), nsymq, irotmq, nirr, max_irr_dim
! input: the number of atoms
! input: the number of symmetries
! input: the symmetry matrices
! input: the inverse of each matrix
! input: the rotated of each atom
! input: write control
! output: the dimension of each represe
! output: the small group of q
! output: the order of the small group
! output: the symmetry sending q -> -q+
! output: the number of irr. representa
real(DP) :: xq (3), rtau (3, 48, nat), at (3, 3), bg (3, 3), &
gi (3, 48), gimq (3)
! input: the q point
! input: the R associated to each tau
! input: the direct lattice vectors
! input: the reciprocal lattice vectors
! output: [S(irotq)*q - q]
! output: [S(irotmq)*q + q]
complex(DP) :: u(3*nat, 3*nat), t(max_irr_dim, max_irr_dim, 48, 3*nat), &
tmq (max_irr_dim, max_irr_dim, 3*nat)
! output: the pattern vectors
! output: the symmetry matrices
! output: the matrice sending q -> -q+G
logical :: minus_q
! output: if true one symmetry send q -
!
! here the local variables
!
integer :: na, nb, imode, jmode, ipert, jpert, nsymtot, imode0, &
irr, ipol, jpol, isymq, irot, sna
! counters and auxiliary variables
integer :: info
real(DP) :: eigen (3 * nat), modul, arg
! the eigenvalues of dynamical matrix
! the modulus of the mode
! the argument of the phase
complex(DP) :: wdyn (3, 3, nat, nat), phi (3 * nat, 3 * nat), &
wrk_u (3, nat), wrk_ru (3, nat), fase
! the dynamical matrix
! the dynamical matrix with two indices
! pattern
! rotated pattern
! the phase factor
logical :: lgamma
! if true gamma point
!
! Allocate the necessary quantities
!
lgamma = (xq(1) == 0.d0 .and. xq(2) == 0.d0 .and. xq(3) == 0.d0)
!
! find the small group of q
!
call smallgq (xq,at,bg,s,nsym,irgq,nsymq,irotmq,minus_q,gi,gimq)
!
! then we generate a random hermitean matrix
!
call set_rndm_seed(1)
call random_matrix (irt,irgq,nsymq,minus_q,irotmq,nat,wdyn,lgamma)
!call write_matrix('random matrix',wdyn,nat)
!
! symmetrize the random matrix with the little group of q
!
call symdynph_gq (xq,wdyn,s,invs,rtau,irt,irgq,nsymq,nat,irotmq,minus_q)
!call write_matrix('symmetrized matrix',wdyn,nat)
!
! Diagonalize the symmetrized random matrix.
! Transform the symmetryzed matrix, currently in crystal coordinates,
! in cartesian coordinates.
!
do na = 1, nat
do nb = 1, nat
call trntnsc( wdyn(1,1,na,nb), at, bg, 1 )
enddo
enddo
!
! We copy the dynamical matrix in a bidimensional array
!
do na = 1, nat
do nb = 1, nat
do ipol = 1, 3
imode = ipol + 3 * (na - 1)
do jpol = 1, 3
jmode = jpol + 3 * (nb - 1)
phi (imode, jmode) = wdyn (ipol, jpol, na, nb)
enddo
enddo
enddo
enddo
!
! Diagonalize
!
call cdiagh (3 * nat, phi, 3 * nat, eigen, u)
!
! We adjust the phase of each mode in such a way that the first
! non zero element is real
!
do imode = 1, 3 * nat
do na = 1, 3 * nat
modul = abs (u(na, imode) )
if (modul.gt.1d-9) then
fase = u (na, imode) / modul
goto 110
endif
enddo
call errore ('set_irr', 'one mode is zero', imode)
110 do na = 1, 3 * nat
u (na, imode) = - u (na, imode) * CONJG(fase)
enddo
enddo
!
! We have here a test which writes eigenvectors and eigenvalues
!
if (iverbosity.eq.1) then
do imode=1,3*nat
WRITE( stdout, '(2x,"autoval = ", e10.4)') eigen(imode)
WRITE( stdout, '(2x,"Real(aut_vet)= ( ",6f10.5,")")') &
( DBLE(u(na,imode)), na=1,3*nat )
WRITE( stdout, '(2x,"Imm(aut_vet)= ( ",6f10.5,")")') &
( AIMAG(u(na,imode)), na=1,3*nat )
end do
end if
!
! Here we count the irreducible representations and their dimensions
do imode = 1, 3 * nat
! initialization
npert (imode) = 0
enddo
nirr = 1
npert (1) = 1
do imode = 2, 3 * nat
if (abs (eigen (imode) - eigen (imode-1) ) / (abs (eigen (imode) ) &
+ abs (eigen (imode-1) ) ) .lt.1.d-4) then
npert (nirr) = npert (nirr) + 1
if (npert (nirr) .gt. max_irr_dim) call errore &
('set_irr', 'npert > max_irr_dim ', nirr)
else
nirr = nirr + 1
npert (nirr) = 1
endif
enddo
!
! And we compute the matrices which represent the symmetry transformat
! in the basis of the displacements
!
t(:,:,:,:) = (0.d0, 0.d0)
tmq(:,:,:) = (0.d0, 0.d0)
if (minus_q) then
nsymtot = nsymq + 1
else
nsymtot = nsymq
endif
do isymq = 1, nsymtot
if (isymq.le.nsymq) then
irot = irgq (isymq)
else
irot = irotmq
endif
imode0 = 0
do irr = 1, nirr
do ipert = 1, npert (irr)
imode = imode0 + ipert
do na = 1, nat
do ipol = 1, 3
jmode = 3 * (na - 1) + ipol
wrk_u (ipol, na) = u (jmode, imode)
enddo
enddo
!
! transform this pattern to crystal basis
!
do na = 1, nat
call trnvecc (wrk_u (1, na), at, bg, - 1)
enddo
!
! the patterns are rotated with this symmetry
!
wrk_ru(:,:) = (0.d0, 0.d0)
do na = 1, nat
sna = irt (irot, na)
arg = 0.d0
do ipol = 1, 3
arg = arg + xq (ipol) * rtau (ipol, irot, na)
enddo
arg = arg * tpi
if (isymq.eq.nsymtot.and.minus_q) then
fase = CMPLX (cos (arg), sin (arg) )
else
fase = CMPLX (cos (arg), - sin (arg) )
endif
do ipol = 1, 3
do jpol = 1, 3
wrk_ru (ipol, sna) = wrk_ru (ipol, sna) + s (jpol, ipol, irot) &
* wrk_u (jpol, na) * fase
enddo
enddo
enddo
!
! Transform back the rotated pattern
!
do na = 1, nat
call trnvecc (wrk_ru (1, na), at, bg, 1)
enddo
!
! Computes the symmetry matrices on the basis of the pattern
!
do jpert = 1, npert (irr)
imode = imode0 + jpert
do na = 1, nat
do ipol = 1, 3
jmode = ipol + (na - 1) * 3
if (isymq.eq.nsymtot.and.minus_q) then
tmq (jpert, ipert, irr) = tmq (jpert, ipert, irr) + CONJG(u ( &
jmode, imode) * wrk_ru (ipol, na) )
else
t (jpert, ipert, irot, irr) = t (jpert, ipert, irot, irr) &
+ CONJG(u (jmode, imode) ) * wrk_ru (ipol, na)
endif
enddo
enddo
enddo
enddo
imode0 = imode0 + npert (irr)
enddo
enddo
!
! Note: the following lines are for testing purposes
!
! nirr = 1
! npert(1)=1
! do na=1,3*nat/2
! u(na,1)=(0.d0,0.d0)
! u(na+3*nat/2,1)=(0.d0,0.d0)
! enddo
! u(1,1)=(-1.d0,0.d0)
! WRITE( stdout,'(" Setting mode for testing ")')
! do na=1,3*nat
! WRITE( stdout,*) u(na,1)
! enddo
! nsymq=1
! minus_q=.false.
#ifdef __PARA
!
! parallel stuff: first node broadcasts everything to all nodes
!
400 continue
call mp_bcast (gi, 0)
call mp_bcast (gimq, 0)
call mp_bcast (t, 0)
call mp_bcast (tmq, 0)
call mp_bcast (u, 0)
call mp_bcast (nsymq, 0)
call mp_bcast (npert, 0)
call mp_bcast (nirr, 0)
call mp_bcast (irotmq, 0)
call mp_bcast (irgq, 0)
call mp_bcast (minus_q, 0)
#endif
return
end subroutine set_irr