quantum-espresso/Modules/lmdif.f90

1717 lines
54 KiB
Fortran

! Minpack Copyright Notice (1999) University of Chicago. All rights reserved
!
! Redistribution and use in source and binary forms, with or
! without modification, are permitted provided that the
! following conditions are met:
!
! 1. Redistributions of source code must retain the above
! copyright notice, this list of conditions and the following
! disclaimer.
!
! 2. Redistributions in binary form must reproduce the above
! copyright notice, this list of conditions and the following
! disclaimer in the documentation and/or other materials
! provided with the distribution.
!
! 3. The end-user documentation included with the
! redistribution, if any, must include the following
! acknowledgment:
!
! "This product includes software developed by the
! University of Chicago, as Operator of Argonne National
! Laboratory.
!
! Alternately, this acknowledgment may appear in the software
! itself, if and wherever such third-party acknowledgments
! normally appear.
!
! 4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
! WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
! UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
! THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
! IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
! OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
! OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
! OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
! USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
! THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
! DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
! UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
! BE CORRECTED.
!
! 5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
! HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
! ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
! INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
! ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
! PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
! SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
! (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
! EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
! POSSIBILITY OF SUCH LOSS OR DAMAGES.
!
! -- End of copyright notice
!
! Contains lmdif1 method and dependencies, converted to fortran90
! syntax and module interface, September 2020
!
! Notes on usage:
! lmdif1 minimizes the sum of squares of m functions of n parameters.
! For some reason, n cannot be larger than m. This means that if you want to
! minimize a scalar value (i.e. chi-square), you'll have to pad it with zeros
! to form and array of size n.
!
!
MODULE lmdif_module
PRIVATE
PUBLIC :: lmdif
PUBLIC :: lmdif1 ! easy to use interface, scroll down for documentation
PUBLIC :: lmdif0 ! easier to use interface
CONTAINS
SUBROUTINE lmdif0(fcn, m, n, x, fvec, tol, info)
INTEGER m, n, info
DOUBLEPRECISION tol
DOUBLEPRECISION x (n), fvec (m)
EXTERNAL fcn
! internal variables
INTEGER ipvt(n), maxfev, mode
DOUBLEPRECISION qtf(n), fjac(m,n), diag(n)
DOUBLEPRECISION wa1 (n), wa2(n), wa3(n), wa4(m)
INTEGER iwa (n), nprint, nfev
DOUBLEPRECISION factor, epsdiff
!
IF(n>m)THEN
PRINT*, "LMDIF expects n<=m"
PRINT*, "Hint: give it f_fit-f_real, it will compute chi^2 internally"
STOP 1
ENDIF
!
diag= 1.d0 ! all the variables have the same importance
mode = 1 ! set diag automatically
factor = 1.d0 ! initial step factor
epsdiff = 0d0 ! precision of fcn (used fo finite difference differentiation)
nprint = 0
maxfev = huge(1) ! take as many iterations as needed
CALL lmdif(fcn,m,n,x,fvec,tol,tol,0d0,maxfev,epsdiff, &
diag,mode,factor,0,info,nfev,fjac, &
m,ipvt,qtf,wa1,wa2,wa3,wa4)
END SUBROUTINE
DOUBLEPRECISION function dpmpar (i)
INTEGER i
! **********
!
! Function dpmpar
!
! This function provides double precision machine parameters
! when the appropriate set of data statements is activated (by
! removing the c from column 1) and all other data statements are
! rendered inactive. Most of the parameter values were obtained
! from the corresponding Bell Laboratories Port Library function.
!
! The function statement is
!
! double precision function dpmpar(i)
!
! where
!
! i is an integer input variable set to 1, 2, or 3 which
! selects the desired machine parameter. If the machine has
! t base b digits and its smallest and largest exponents are
! emin and emax, respectively, then these parameters are
!
! dpmpar(1) = b**(1 - t), the machine precision,
!
! dpmpar(2) = b**(emin - 1), the smallest magnitude,
!
! dpmpar(3) = b**emax*(1 - b**(-t)), the largest magnitude.
!
! Argonne National Laboratory. MINPACK Project. November 1996.
! Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More'
!
! **********
INTEGER mcheps (4)
INTEGER minmag (4)
INTEGER maxmag (4)
DOUBLEPRECISION dmach (3)
EQUIVALENCE (dmach (1), mcheps (1) )
EQUIVALENCE (dmach (2), minmag (1) )
EQUIVALENCE (dmach (3), maxmag (1) )
!
! Machine constants for the IBM 360/370 series,
! the Amdahl 470/V6, the ICL 2900, the Itel AS/6,
! the Xerox Sigma 5/7/9 and the Sel systems 85/86.
!
! data mcheps(1),mcheps(2) / z34100000, z00000000 /
! data minmag(1),minmag(2) / z00100000, z00000000 /
! data maxmag(1),maxmag(2) / z7fffffff, zffffffff /
!
! Machine constants for the Honeywell 600/6000 series.
!
! data mcheps(1),mcheps(2) / o606400000000, o000000000000 /
! data minmag(1),minmag(2) / o402400000000, o000000000000 /
! data maxmag(1),maxmag(2) / o376777777777, o777777777777 /
!
! Machine constants for the CDC 6000/7000 series.
!
! data mcheps(1) / 15614000000000000000b /
! data mcheps(2) / 15010000000000000000b /
!
! data minmag(1) / 00604000000000000000b /
! data minmag(2) / 00000000000000000000b /
!
! data maxmag(1) / 37767777777777777777b /
! data maxmag(2) / 37167777777777777777b /
!
! Machine constants for the PDP-10 (KA processor).
!
! data mcheps(1),mcheps(2) / "114400000000, "000000000000 /
! data minmag(1),minmag(2) / "033400000000, "000000000000 /
! data maxmag(1),maxmag(2) / "377777777777, "344777777777 /
!
! Machine constants for the PDP-10 (KI processor).
!
! data mcheps(1),mcheps(2) / "104400000000, "000000000000 /
! data minmag(1),minmag(2) / "000400000000, "000000000000 /
! data maxmag(1),maxmag(2) / "377777777777, "377777777777 /
!
! Machine constants for the PDP-11.
!
! data mcheps(1),mcheps(2) / 9472, 0 /
! data mcheps(3),mcheps(4) / 0, 0 /
!
! data minmag(1),minmag(2) / 128, 0 /
! data minmag(3),minmag(4) / 0, 0 /
!
! data maxmag(1),maxmag(2) / 32767, -1 /
! data maxmag(3),maxmag(4) / -1, -1 /
!
! Machine constants for the Burroughs 6700/7700 systems.
!
! data mcheps(1) / o1451000000000000 /
! data mcheps(2) / o0000000000000000 /
!
! data minmag(1) / o1771000000000000 /
! data minmag(2) / o7770000000000000 /
!
! data maxmag(1) / o0777777777777777 /
! data maxmag(2) / o7777777777777777 /
!
! Machine constants for the Burroughs 5700 system.
!
! data mcheps(1) / o1451000000000000 /
! data mcheps(2) / o0000000000000000 /
!
! data minmag(1) / o1771000000000000 /
! data minmag(2) / o0000000000000000 /
!
! data maxmag(1) / o0777777777777777 /
! data maxmag(2) / o0007777777777777 /
!
! Machine constants for the Burroughs 1700 system.
!
! data mcheps(1) / zcc6800000 /
! data mcheps(2) / z000000000 /
!
! data minmag(1) / zc00800000 /
! data minmag(2) / z000000000 /
!
! data maxmag(1) / zdffffffff /
! data maxmag(2) / zfffffffff /
!
! Machine constants for the Univac 1100 series.
!
! data mcheps(1),mcheps(2) / o170640000000, o000000000000 /
! data minmag(1),minmag(2) / o000040000000, o000000000000 /
! data maxmag(1),maxmag(2) / o377777777777, o777777777777 /
!
! Machine constants for the Data General Eclipse S/200.
!
! Note - it may be appropriate to include the following card -
! static dmach(3)
!
! data minmag/20k,3*0/,maxmag/77777k,3*177777k/
! data mcheps/32020k,3*0/
!
! Machine constants for the Harris 220.
!
! data mcheps(1),mcheps(2) / '20000000, '00000334 /
! data minmag(1),minmag(2) / '20000000, '00000201 /
! data maxmag(1),maxmag(2) / '37777777, '37777577 /
!
! Machine constants for the Cray-1.
!
! data mcheps(1) / 0376424000000000000000b /
! data mcheps(2) / 0000000000000000000000b /
!
! data minmag(1) / 0200034000000000000000b /
! data minmag(2) / 0000000000000000000000b /
!
! data maxmag(1) / 0577777777777777777777b /
! data maxmag(2) / 0000007777777777777776b /
!
! Machine constants for the Prime 400.
!
! data mcheps(1),mcheps(2) / :10000000000, :00000000123 /
! data minmag(1),minmag(2) / :10000000000, :00000100000 /
! data maxmag(1),maxmag(2) / :17777777777, :37777677776 /
!
! Machine constants for the VAX-11.
!
! data mcheps(1),mcheps(2) / 9472, 0 /
! data minmag(1),minmag(2) / 128, 0 /
! data maxmag(1),maxmag(2) / -32769, -1 /
!
! Machine constants for IEEE machines.
!
DATA dmach (1) / 2.22044604926d-16 /
DATA dmach (2) / 2.22507385852d-308 /
DATA dmach (3) / 1.79769313485d+308 /
!
dpmpar = dmach (i)
RETURN
!
! Last card of function dpmpar.
!
END FUNCTION dpmpar
DOUBLEPRECISION function enorm (n, x)
INTEGER n
DOUBLEPRECISION x (n)
! **********
!
! function enorm
!
! given an n-vector x, this function calculates the
! euclidean norm of x.
!
! the euclidean norm is computed by accumulating the sum of
! squares in three different sums. the sums of squares for the
! small and large components are scaled so that no overflows
! occur. non-destructive underflows are permitted. underflows
! and overflows do not occur in the computation of the unscaled
! sum of squares for the intermediate components.
! the definitions of small, intermediate and large components
! depend on two constants, rdwarf and rgiant. the main
! restrictions on these constants are that rdwarf**2 not
! underflow and rgiant**2 not overflow. the constants
! given here are suitable for every known computer.
!
! the function statement is
!
! double precision function enorm(n,x)
!
! where
!
! n is a positive integer input variable.
!
! x is an input array of length n.
!
! subprograms called
!
! fortran-supplied ... dabs,dsqrt
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
INTEGER i
DOUBLEPRECISION agiant, floatn, one, rdwarf, rgiant, s1, s2, s3, &
xabs, x1max, x3max, zero
DATA one, zero, rdwarf, rgiant / 1.0d0, 0.0d0, 3.834d-20, &
1.304d19 /
s1 = zero
s2 = zero
s3 = zero
x1max = zero
x3max = zero
floatn = n
agiant = rgiant / floatn
DO 90 i = 1, n
xabs = dabs (x (i) )
IF (xabs.gt.rdwarf.and.xabs.lt.agiant) goto 70
IF (xabs.le.rdwarf) goto 30
!
! sum for large components.
!
IF (xabs.le.x1max) goto 10
s1 = one+s1 * (x1max / xabs) **2
x1max = xabs
GOTO 20
10 CONTINUE
s1 = s1 + (xabs / x1max) **2
20 CONTINUE
GOTO 60
30 CONTINUE
!
! sum for small components.
!
IF (xabs.le.x3max) goto 40
s3 = one+s3 * (x3max / xabs) **2
x3max = xabs
GOTO 50
40 CONTINUE
IF (xabs.ne.zero) s3 = s3 + (xabs / x3max) **2
50 CONTINUE
60 CONTINUE
GOTO 80
70 CONTINUE
!
! sum for intermediate components.
!
s2 = s2 + xabs**2
80 CONTINUE
90 END DO
!
! calculation of norm.
!
IF (s1.eq.zero) goto 100
enorm = x1max * dsqrt (s1 + (s2 / x1max) / x1max)
GOTO 130
100 CONTINUE
IF (s2.eq.zero) goto 110
IF (s2.ge.x3max) enorm = dsqrt (s2 * (one+ (x3max / s2) * (x3max *&
s3) ) )
IF (s2.lt.x3max) enorm = dsqrt (x3max * ( (s2 / x3max) + (x3max * &
s3) ) )
GOTO 120
110 CONTINUE
enorm = x3max * dsqrt (s3)
120 CONTINUE
130 CONTINUE
RETURN
!
! last card of function enorm.
!
END FUNCTION enorm
SUBROUTINE fdjac2 (fcn, m, n, x, fvec, fjac, ldfjac, iflag, &
epsfcn, wa)
INTEGER m, n, ldfjac, iflag
DOUBLEPRECISION epsfcn
DOUBLEPRECISION x (n), fvec (m), fjac (ldfjac, n), wa (m)
! **********
!
! subroutine fdjac2
!
! this subroutine computes a forward-difference approximation
! to the m by n jacobian matrix associated with a specified
! problem of m functions in n variables.
!
! the subroutine statement is
!
! subroutine fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa)
!
! where
!
! fcn is the name of the user-supplied subroutine which
! calculates the functions. fcn must be declared
! in an external statement in the user calling
! program, and should be written as follows.
!
! subroutine fcn(m,n,x,fvec,iflag)
! integer m,n,iflag
! double precision x(n),fvec(m)
! ----------
! calculate the functions at x and
! return this vector in fvec.
! ----------
! return
! end
!
! the value of iflag should not be changed by fcn unless
! the user wants to terminate execution of fdjac2.
! in this case set iflag to a negative integer.
!
! m is a positive integer input variable set to the number
! of functions.
!
! n is a positive integer input variable set to the number
! of variables. n must not exceed m.
!
! x is an input array of length n.
!
! fvec is an input array of length m which must contain the
! functions evaluated at x.
!
! fjac is an output m by n array which contains the
! approximation to the jacobian matrix evaluated at x.
!
! ldfjac is a positive integer input variable not less than m
! which specifies the leading dimension of the array fjac.
!
! iflag is an integer variable which can be used to terminate
! the execution of fdjac2. see description of fcn.
!
! epsfcn is an input variable used in determining a suitable
! step length for the forward-difference approximation. this
! approximation assumes that the relative errors in the
! functions are of the order of epsfcn. if epsfcn is less
! than the machine precision, it is assumed that the relative
! errors in the functions are of the order of the machine
! precision.
!
! wa is a work array of length m.
!
! subprograms called
!
! user-supplied ...... fcn
!
! minpack-supplied ... dpmpar
!
! fortran-supplied ... dabs,dmax1,dsqrt
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
INTEGER i, j
DOUBLEPRECISION eps, epsmch, h, temp, zero
!DOUBLEPRECISION dpmpar
DATA zero / 0.0d0 /
!
! epsmch is the machine precision.
!
epsmch = dpmpar (1)
!
eps = dsqrt (dmax1 (epsfcn, epsmch) )
DO 20 j = 1, n
temp = x (j)
h = eps * dabs (temp)
IF (h.eq.zero) h = eps
x (j) = temp + h
CALL fcn (m, n, x, wa, iflag)
IF (iflag.lt.0) goto 30
x (j) = temp
DO 10 i = 1, m
fjac (i, j) = (wa (i) - fvec (i) ) / h
10 END DO
20 END DO
30 CONTINUE
RETURN
!
! last card of subroutine fdjac2.
!
END SUBROUTINE fdjac2
SUBROUTINE lmdif (fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, &
epsfcn, diag, mode, factor, nprint, info, nfev, fjac, ldfjac, &
ipvt, qtf, wa1, wa2, wa3, wa4)
INTEGER m, n, maxfev, mode, nprint, info, nfev, ldfjac
INTEGER ipvt (n)
DOUBLEPRECISION ftol, xtol, gtol, epsfcn, factor
DOUBLEPRECISION x (n), fvec (m), diag (n), fjac (ldfjac, n), &
qtf (n), wa1 (n), wa2 (n), wa3 (n), wa4 (m)
EXTERNAL fcn
! **********
!
! subroutine lmdif
!
! the purpose of lmdif is to minimize the sum of the squares of
! m nonlinear functions in n variables by a modification of
! the levenberg-marquardt algorithm. the user must provide a
! subroutine which calculates the functions. the jacobian is
! then calculated by a forward-difference approximation.
!
! the subroutine statement is
!
! subroutine lmdif(fcn,m,n,x,fvec,ftol,xtol,gtol,maxfev,epsfcn,
! diag,mode,factor,nprint,info,nfev,fjac,
! ldfjac,ipvt,qtf,wa1,wa2,wa3,wa4)
!
! where
!
! fcn is the name of the user-supplied subroutine which
! calculates the functions. fcn must be declared
! in an external statement in the user calling
! program, and should be written as follows.
!
! subroutine fcn(m,n,x,fvec,iflag)
! integer m,n,iflag
! double precision x(n),fvec(m)
! ----------
! calculate the functions at x and
! return this vector in fvec.
! ----------
! return
! end
!
! the value of iflag should not be changed by fcn unless
! the user wants to terminate execution of lmdif.
! in this case set iflag to a negative integer.
!
! m is a positive integer input variable set to the number
! of functions.
!
! n is a positive integer input variable set to the number
! of variables. n must not exceed m.
!
! x is an array of length n. on input x must contain
! an initial estimate of the solution vector. on output x
! contains the final estimate of the solution vector.
!
! fvec is an output array of length m which contains
! the functions evaluated at the output x.
!
! ftol is a nonnegative input variable. termination
! occurs when both the actual and predicted relative
! reductions in the sum of squares are at most ftol.
! therefore, ftol measures the relative error desired
! in the sum of squares.
!
! xtol is a nonnegative input variable. termination
! occurs when the relative error between two consecutive
! iterates is at most xtol. therefore, xtol measures the
! relative error desired in the approximate solution.
!
! gtol is a nonnegative input variable. termination
! occurs when the cosine of the angle between fvec and
! any column of the jacobian is at most gtol in absolute
! value. therefore, gtol measures the orthogonality
! desired between the function vector and the columns
! of the jacobian.
!
! maxfev is a positive integer input variable. termination
! occurs when the number of calls to fcn is at least
! maxfev by the end of an iteration.
!
! epsfcn is an input variable used in determining a suitable
! step length for the forward-difference approximation. this
! approximation assumes that the relative errors in the
! functions are of the order of epsfcn. if epsfcn is less
! than the machine precision, it is assumed that the relative
! errors in the functions are of the order of the machine
! precision.
!
! diag is an array of length n. if mode = 1 (see
! below), diag is internally set. if mode = 2, diag
! must contain positive entries that serve as
! multiplicative scale factors for the variables.
!
! mode is an integer input variable. if mode = 1, the
! variables will be scaled internally. if mode = 2,
! the scaling is specified by the input diag. other
! values of mode are equivalent to mode = 1.
!
! factor is a positive input variable used in determining the
! initial step bound. this bound is set to the product of
! factor and the euclidean norm of diag*x if nonzero, or else
! to factor itself. in most cases factor should lie in the
! interval (.1,100.). 100. is a generally recommended value.
!
! nprint is an integer input variable that enables controlled
! printing of iterates if it is positive. in this case,
! fcn is called with iflag = 0 at the beginning of the first
! iteration and every nprint iterations thereafter and
! immediately prior to return, with x and fvec available
! for printing. if nprint is not positive, no special calls
! of fcn with iflag = 0 are made.
!
! info is an integer output variable. if the user has
! terminated execution, info is set to the (negative)
! value of iflag. see description of fcn. otherwise,
! info is set as follows.
!
! info = 0 improper input parameters.
!
! info = 1 both actual and predicted relative reductions
! in the sum of squares are at most ftol.
!
! info = 2 relative error between two consecutive iterates
! is at most xtol.
!
! info = 3 conditions for info = 1 and info = 2 both hold.
!
! info = 4 the cosine of the angle between fvec and any
! column of the jacobian is at most gtol in
! absolute value.
!
! info = 5 number of calls to fcn has reached or
! exceeded maxfev.
!
! info = 6 ftol is too small. no further reduction in
! the sum of squares is possible.
!
! info = 7 xtol is too small. no further improvement in
! the approximate solution x is possible.
!
! info = 8 gtol is too small. fvec is orthogonal to the
! columns of the jacobian to machine precision.
!
! nfev is an integer output variable set to the number of
! calls to fcn.
!
! fjac is an output m by n array. the upper n by n submatrix
! of fjac contains an upper triangular matrix r with
! diagonal elements of nonincreasing magnitude such that
!
! t t t
! p *(jac *jac)*p = r *r,
!
! where p is a permutation matrix and jac is the final
! calculated jacobian. column j of p is column ipvt(j)
! (see below) of the identity matrix. the lower trapezoidal
! part of fjac contains information generated during
! the computation of r.
!
! ldfjac is a positive integer input variable not less than m
! which specifies the leading dimension of the array fjac.
!
! ipvt is an integer output array of length n. ipvt
! defines a permutation matrix p such that jac*p = q*r,
! where jac is the final calculated jacobian, q is
! orthogonal (not stored), and r is upper triangular
! with diagonal elements of nonincreasing magnitude.
! column j of p is column ipvt(j) of the identity matrix.
!
! qtf is an output array of length n which contains
! the first n elements of the vector (q transpose)*fvec.
!
! wa1, wa2, and wa3 are work arrays of length n.
!
! wa4 is a work array of length m.
!
! subprograms called
!
! user-supplied ...... fcn
!
! minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac
!
! fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
INTEGER i, iflag, iter, j, l
DOUBLEPRECISION actred, delta, dirder, epsmch, fnorm, fnorm1, &
gnorm, one, par, pnorm, prered, p1, p5, p25, p75, p0001, ratio, &
sum, temp, temp1, temp2, xnorm, zero
!DOUBLEPRECISION dpmpar, enorm
DATA one, p1, p5, p25, p75, p0001, zero / 1.0d0, 1.0d-1, 5.0d-1, &
2.5d-1, 7.5d-1, 1.0d-4, 0.0d0 /
!
! epsmch is the machine precision.
!
epsmch = dpmpar (1)
!
info = 0
iflag = 0
nfev = 0
!
! check the input parameters for errors.
!
IF (n.le.0.or.m.lt.n.or.ldfjac.lt.m.or.ftol.lt.zero.or.xtol.lt.zer&
&o.or.gtol.lt.zero.or.maxfev.le.0.or.factor.le.zero) goto 300
IF (mode.ne.2) goto 20
DO 10 j = 1, n
IF (diag (j) .le.zero) goto 300
10 END DO
20 CONTINUE
!
! evaluate the function at the starting point
! and calculate its norm.
!
iflag = 1
CALL fcn (m, n, x, fvec, iflag)
nfev = 1
IF (iflag.lt.0) goto 300
fnorm = enorm (m, fvec)
!
! initialize levenberg-marquardt parameter and iteration counter.
!
par = zero
iter = 1
!
! beginning of the outer loop.
!
30 CONTINUE
!
! calculate the jacobian matrix.
!
iflag = 2
CALL fdjac2 (fcn, m, n, x, fvec, fjac, ldfjac, iflag, epsfcn, wa4)
nfev = nfev + n
IF (iflag.lt.0) goto 300
!
! if requested, call fcn to enable printing of iterates.
!
IF (nprint.le.0) goto 40
iflag = 0
IF (mod (iter - 1, nprint) .eq.0) call fcn (m, n, x, fvec, iflag)
IF (iflag.lt.0) goto 300
40 CONTINUE
!
! compute the qr factorization of the jacobian.
!
CALL qrfac (m, n, fjac, ldfjac, .true., ipvt, n, wa1, wa2, wa3)
!
! on the first iteration and if mode is 1, scale according
! to the norms of the columns of the initial jacobian.
!
IF (iter.ne.1) goto 80
IF (mode.eq.2) goto 60
DO 50 j = 1, n
diag (j) = wa2 (j)
IF (wa2 (j) .eq.zero) diag (j) = one
50 END DO
60 CONTINUE
!
! on the first iteration, calculate the norm of the scaled x
! and initialize the step bound delta.
!
DO 70 j = 1, n
wa3 (j) = diag (j) * x (j)
70 END DO
xnorm = enorm (n, wa3)
delta = factor * xnorm
IF (delta.eq.zero) delta = factor
80 CONTINUE
!
! form (q transpose)*fvec and store the first n components in
! qtf.
!
DO 90 i = 1, m
wa4 (i) = fvec (i)
90 END DO
DO 130 j = 1, n
IF (fjac (j, j) .eq.zero) goto 120
sum = zero
DO 100 i = j, m
sum = sum + fjac (i, j) * wa4 (i)
100 END DO
temp = - sum / fjac (j, j)
DO 110 i = j, m
wa4 (i) = wa4 (i) + fjac (i, j) * temp
110 END DO
120 CONTINUE
fjac (j, j) = wa1 (j)
qtf (j) = wa4 (j)
130 END DO
!
! compute the norm of the scaled gradient.
!
gnorm = zero
IF (fnorm.eq.zero) goto 170
DO 160 j = 1, n
l = ipvt (j)
IF (wa2 (l) .eq.zero) goto 150
sum = zero
DO 140 i = 1, j
sum = sum + fjac (i, j) * (qtf (i) / fnorm)
140 END DO
gnorm = dmax1 (gnorm, dabs (sum / wa2 (l) ) )
150 CONTINUE
160 END DO
170 CONTINUE
!
! test for convergence of the gradient norm.
!
IF (gnorm.le.gtol) info = 4
IF (info.ne.0) goto 300
!
! rescale if necessary.
!
IF (mode.eq.2) goto 190
DO 180 j = 1, n
diag (j) = dmax1 (diag (j), wa2 (j) )
180 END DO
190 CONTINUE
!
! beginning of the inner loop.
!
200 CONTINUE
!
! determine the levenberg-marquardt parameter.
!
CALL lmpar (n, fjac, ldfjac, ipvt, diag, qtf, delta, par, wa1, &
wa2, wa3, wa4)
!
! store the direction p and x + p. calculate the norm of p.
!
DO 210 j = 1, n
wa1 (j) = - wa1 (j)
wa2 (j) = x (j) + wa1 (j)
wa3 (j) = diag (j) * wa1 (j)
210 END DO
pnorm = enorm (n, wa3)
!
! on the first iteration, adjust the initial step bound.
!
IF (iter.eq.1) delta = dmin1 (delta, pnorm)
!
! evaluate the function at x + p and calculate its norm.
!
iflag = 1
CALL fcn (m, n, wa2, wa4, iflag)
nfev = nfev + 1
IF (iflag.lt.0) goto 300
fnorm1 = enorm (m, wa4)
!
! compute the scaled actual reduction.
!
actred = - one
IF (p1 * fnorm1.lt.fnorm) actred = one- (fnorm1 / fnorm) **2
!
! compute the scaled predicted reduction and
! the scaled directional derivative.
!
DO 230 j = 1, n
wa3 (j) = zero
l = ipvt (j)
temp = wa1 (l)
DO 220 i = 1, j
wa3 (i) = wa3 (i) + fjac (i, j) * temp
220 END DO
230 END DO
temp1 = enorm (n, wa3) / fnorm
temp2 = (dsqrt (par) * pnorm) / fnorm
prered = temp1**2 + temp2**2 / p5
dirder = - (temp1**2 + temp2**2)
!
! compute the ratio of the actual to the predicted
! reduction.
!
ratio = zero
IF (prered.ne.zero) ratio = actred / prered
!
! update the step bound.
!
IF (ratio.gt.p25) goto 240
IF (actred.ge.zero) temp = p5
IF (actred.lt.zero) temp = p5 * dirder / (dirder + p5 * actred)
IF (p1 * fnorm1.ge.fnorm.or.temp.lt.p1) temp = p1
delta = temp * dmin1 (delta, pnorm / p1)
par = par / temp
GOTO 260
240 CONTINUE
IF (par.ne.zero.and.ratio.lt.p75) goto 250
delta = pnorm / p5
par = p5 * par
250 CONTINUE
260 CONTINUE
!
! test for successful iteration.
!
IF (ratio.lt.p0001) goto 290
!
! successful iteration. update x, fvec, and their norms.
!
DO 270 j = 1, n
x (j) = wa2 (j)
wa2 (j) = diag (j) * x (j)
270 END DO
DO 280 i = 1, m
fvec (i) = wa4 (i)
280 END DO
xnorm = enorm (n, wa2)
fnorm = fnorm1
iter = iter + 1
290 CONTINUE
!
! tests for convergence.
!
IF (dabs (actred) .le.ftol.and.prered.le.ftol.and.p5 * &
ratio.le.one) info = 1
IF (delta.le.xtol * xnorm) info = 2
IF (dabs (actred) .le.ftol.and.prered.le.ftol.and.p5 * &
ratio.le.one.and.info.eq.2) info = 3
IF (info.ne.0) goto 300
!
! tests for termination and stringent tolerances.
!
IF (nfev.ge.maxfev) info = 5
IF (dabs (actred) .le.epsmch.and.prered.le.epsmch.and.p5 * &
ratio.le.one) info = 6
IF (delta.le.epsmch * xnorm) info = 7
IF (gnorm.le.epsmch) info = 8
IF (info.ne.0) goto 300
!
! end of the inner loop. repeat if iteration unsuccessful.
!
IF (ratio.lt.p0001) goto 200
!
! end of the outer loop.
!
GOTO 30
300 CONTINUE
!
! termination, either normal or user imposed.
!
IF (iflag.lt.0) info = iflag
iflag = 0
IF (nprint.gt.0) call fcn (m, n, x, fvec, iflag)
RETURN
!
! last card of subroutine lmdif.
!
END SUBROUTINE lmdif
! =====================================================================
SUBROUTINE lmdif1 (fcn, m, n, x, fvec, tol, info, iwa, wa, lwa)
INTEGER m, n, info, lwa
INTEGER iwa (n)
DOUBLEPRECISION tol
DOUBLEPRECISION x (n), fvec (m), wa (lwa)
EXTERNAL fcn
! **********
!
! subroutine lmdif1
!
! the purpose of lmdif1 is to minimize the sum of the squares of
! m nonlinear functions in n variables by a modification of the
! levenberg-marquardt algorithm. this is done by using the more
! general least-squares solver lmdif. the user must provide a
! subroutine which calculates the functions. the jacobian is
! then calculated by a forward-difference approximation.
!
! the subroutine statement is
!
! subroutine lmdif1(fcn,m,n,x,fvec,tol,info,iwa,wa,lwa)
!
! where
!
! fcn is the name of the user-supplied subroutine which
! calculates the functions. fcn must be declared
! in an external statement in the user calling
! program, and should be written as follows.
!
! subroutine fcn(m,n,x,fvec,iflag)
! integer m,n,iflag
! double precision x(n),fvec(m)
! ----------
! calculate the functions at x and
! return this vector in fvec.
! ----------
! return
! end
!
! the value of iflag should not be changed by fcn unless
! the user wants to terminate execution of lmdif1.
! in this case set iflag to a negative integer.
!
! m is a positive integer input variable set to the number
! of functions.
!
! n is a positive integer input variable set to the number
! of variables. n must not exceed m.
!
! x is an array of length n. on input x must contain
! an initial estimate of the solution vector. on output x
! contains the final estimate of the solution vector.
!
! fvec is an output array of length m which contains
! the functions evaluated at the output x.
!
! tol is a nonnegative input variable. termination occurs
! when the algorithm estimates either that the relative
! error in the sum of squares is at most tol or that
! the relative error between x and the solution is at
! most tol.
!
! info is an integer output variable. if the user has
! terminated execution, info is set to the (negative)
! value of iflag. see description of fcn. otherwise,
! info is set as follows.
!
! info = 0 improper input parameters.
!
! info = 1 algorithm estimates that the relative error
! in the sum of squares is at most tol.
!
! info = 2 algorithm estimates that the relative error
! between x and the solution is at most tol.
!
! info = 3 conditions for info = 1 and info = 2 both hold.
!
! info = 4 fvec is orthogonal to the columns of the
! jacobian to machine precision.
!
! info = 5 number of calls to fcn has reached or
! exceeded 200*(n+1).
!
! info = 6 tol is too small. no further reduction in
! the sum of squares is possible.
!
! info = 7 tol is too small. no further improvement in
! the approximate solution x is possible.
!
! iwa is an integer work array of length n.
!
! wa is a work array of length lwa.
!
! lwa is a positive integer input variable not less than
! m*n+5*n+m.
!
! subprograms called
!
! user-supplied ...... fcn
!
! minpack-supplied ... lmdif
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
INTEGER maxfev, mode, mp5n, nfev, nprint
DOUBLEPRECISION epsfcn, factor, ftol, gtol, xtol, zero
DATA factor, zero / 1.0d2, 0.0d0 /
info = 0
!
! check the input parameters for errors.
!
IF (n.le.0.or.m.lt.n.or.tol.lt.zero.or.lwa.lt.m * n + 5 * n + m) &
goto 10
!
! call lmdif.
!
maxfev = 5000 * (n + 1)
ftol = tol
xtol = tol
gtol = zero
epsfcn = zero
mode = 1
nprint = 0
mp5n = m + 5 * n
CALL lmdif (fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, &
wa (1), mode, factor, nprint, info, nfev, wa (mp5n + 1), m, iwa, &
wa (n + 1), wa (2 * n + 1), wa (3 * n + 1), wa (4 * n + 1), &
wa (5 * n + 1) )
IF (info.eq.8) info = 4
10 CONTINUE
RETURN
!
! last card of subroutine lmdif1.
!
END SUBROUTINE lmdif1
SUBROUTINE lmpar (n, r, ldr, ipvt, diag, qtb, delta, par, x, &
sdiag, wa1, wa2)
INTEGER n, ldr
INTEGER ipvt (n)
DOUBLEPRECISION delta, par
DOUBLEPRECISION r (ldr, n), diag (n), qtb (n), x (n), sdiag (n), &
wa1 (n), wa2 (n)
! **********
!
! subroutine lmpar
!
! given an m by n matrix a, an n by n nonsingular diagonal
! matrix d, an m-vector b, and a positive number delta,
! the problem is to determine a value for the parameter
! par such that if x solves the system
!
! a*x = b , sqrt(par)*d*x = 0 ,
!
! in the least squares sense, and dxnorm is the euclidean
! norm of d*x, then either par is zero and
!
! (dxnorm-delta) .le. 0.1*delta ,
!
! or par is positive and
!
! abs(dxnorm-delta) .le. 0.1*delta .
!
! this subroutine completes the solution of the problem
! if it is provided with the necessary information from the
! qr factorization, with column pivoting, of a. that is, if
! a*p = q*r, where p is a permutation matrix, q has orthogonal
! columns, and r is an upper triangular matrix with diagonal
! elements of nonincreasing magnitude, then lmpar expects
! the full upper triangle of r, the permutation matrix p,
! and the first n components of (q transpose)*b. on output
! lmpar also provides an upper triangular matrix s such that
!
! t t t
! p *(a *a + par*d*d)*p = s *s .
!
! s is employed within lmpar and may be of separate interest.
!
! only a few iterations are generally needed for convergence
! of the algorithm. if, however, the limit of 10 iterations
! is reached, then the output par will contain the best
! value obtained so far.
!
! the subroutine statement is
!
! subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,
! wa1,wa2)
!
! where
!
! n is a positive integer input variable set to the order of r.
!
! r is an n by n array. on input the full upper triangle
! must contain the full upper triangle of the matrix r.
! on output the full upper triangle is unaltered, and the
! strict lower triangle contains the strict upper triangle
! (transposed) of the upper triangular matrix s.
!
! ldr is a positive integer input variable not less than n
! which specifies the leading dimension of the array r.
!
! ipvt is an integer input array of length n which defines the
! permutation matrix p such that a*p = q*r. column j of p
! is column ipvt(j) of the identity matrix.
!
! diag is an input array of length n which must contain the
! diagonal elements of the matrix d.
!
! qtb is an input array of length n which must contain the first
! n elements of the vector (q transpose)*b.
!
! delta is a positive input variable which specifies an upper
! bound on the euclidean norm of d*x.
!
! par is a nonnegative variable. on input par contains an
! initial estimate of the levenberg-marquardt parameter.
! on output par contains the final estimate.
!
! x is an output array of length n which contains the least
! squares solution of the system a*x = b, sqrt(par)*d*x = 0,
! for the output par.
!
! sdiag is an output array of length n which contains the
! diagonal elements of the upper triangular matrix s.
!
! wa1 and wa2 are work arrays of length n.
!
! subprograms called
!
! minpack-supplied ... dpmpar,enorm,qrsolv
!
! fortran-supplied ... dabs,dmax1,dmin1,dsqrt
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
INTEGER i, iter, j, jm1, jp1, k, l, nsing
DOUBLEPRECISION dxnorm, dwarf, fp, gnorm, parc, parl, paru, p1, &
p001, sum, temp, zero
!DOUBLEPRECISION dpmpar, enorm
DATA p1, p001, zero / 1.0d-1, 1.0d-3, 0.0d0 /
!
! dwarf is the smallest positive magnitude.
!
dwarf = dpmpar (2)
!
! compute and store in x the gauss-newton direction. if the
! jacobian is rank-deficient, obtain a least squares solution.
!
nsing = n
DO 10 j = 1, n
wa1 (j) = qtb (j)
IF (r (j, j) .eq.zero.and.nsing.eq.n) nsing = j - 1
IF (nsing.lt.n) wa1 (j) = zero
10 END DO
IF (nsing.lt.1) goto 50
DO 40 k = 1, nsing
j = nsing - k + 1
wa1 (j) = wa1 (j) / r (j, j)
temp = wa1 (j)
jm1 = j - 1
IF (jm1.lt.1) goto 30
DO 20 i = 1, jm1
wa1 (i) = wa1 (i) - r (i, j) * temp
20 END DO
30 CONTINUE
40 END DO
50 CONTINUE
DO 60 j = 1, n
l = ipvt (j)
x (l) = wa1 (j)
60 END DO
!
! initialize the iteration counter.
! evaluate the function at the origin, and test
! for acceptance of the gauss-newton direction.
!
iter = 0
DO 70 j = 1, n
wa2 (j) = diag (j) * x (j)
70 END DO
dxnorm = enorm (n, wa2)
fp = dxnorm - delta
IF (fp.le.p1 * delta) goto 220
!
! if the jacobian is not rank deficient, the newton
! step provides a lower bound, parl, for the zero of
! the function. otherwise set this bound to zero.
!
parl = zero
IF (nsing.lt.n) goto 120
DO 80 j = 1, n
l = ipvt (j)
wa1 (j) = diag (l) * (wa2 (l) / dxnorm)
80 END DO
DO 110 j = 1, n
sum = zero
jm1 = j - 1
IF (jm1.lt.1) goto 100
DO 90 i = 1, jm1
sum = sum + r (i, j) * wa1 (i)
90 END DO
100 CONTINUE
wa1 (j) = (wa1 (j) - sum) / r (j, j)
110 END DO
temp = enorm (n, wa1)
parl = ( (fp / delta) / temp) / temp
120 CONTINUE
!
! calculate an upper bound, paru, for the zero of the function.
!
DO 140 j = 1, n
sum = zero
DO 130 i = 1, j
sum = sum + r (i, j) * qtb (i)
130 END DO
l = ipvt (j)
wa1 (j) = sum / diag (l)
140 END DO
gnorm = enorm (n, wa1)
paru = gnorm / delta
IF (paru.eq.zero) paru = dwarf / dmin1 (delta, p1)
!
! if the input par lies outside of the interval (parl,paru),
! set par to the closer endpoint.
!
par = dmax1 (par, parl)
par = dmin1 (par, paru)
IF (par.eq.zero) par = gnorm / dxnorm
!
! beginning of an iteration.
!
150 CONTINUE
iter = iter + 1
!
! evaluate the function at the current value of par.
!
IF (par.eq.zero) par = dmax1 (dwarf, p001 * paru)
temp = dsqrt (par)
DO 160 j = 1, n
wa1 (j) = temp * diag (j)
160 END DO
CALL qrsolv (n, r, ldr, ipvt, wa1, qtb, x, sdiag, wa2)
DO 170 j = 1, n
wa2 (j) = diag (j) * x (j)
170 END DO
dxnorm = enorm (n, wa2)
temp = fp
fp = dxnorm - delta
!
! if the function is small enough, accept the current value
! of par. also test for the exceptional cases where parl
! is zero or the number of iterations has reached 10.
!
IF (dabs (fp) .le.p1 * delta.or.parl.eq.zero.and.fp.le.temp.and.te&
&mp.lt.zero.or.iter.eq.10) goto 220
!
! compute the newton correction.
!
DO 180 j = 1, n
l = ipvt (j)
wa1 (j) = diag (l) * (wa2 (l) / dxnorm)
180 END DO
DO 210 j = 1, n
wa1 (j) = wa1 (j) / sdiag (j)
temp = wa1 (j)
jp1 = j + 1
IF (n.lt.jp1) goto 200
DO 190 i = jp1, n
wa1 (i) = wa1 (i) - r (i, j) * temp
190 END DO
200 CONTINUE
210 END DO
temp = enorm (n, wa1)
parc = ( (fp / delta) / temp) / temp
!
! depending on the sign of the function, update parl or paru.
!
IF (fp.gt.zero) parl = dmax1 (parl, par)
IF (fp.lt.zero) paru = dmin1 (paru, par)
!
! compute an improved estimate for par.
!
par = dmax1 (parl, par + parc)
!
! end of an iteration.
!
GOTO 150
220 CONTINUE
!
! termination.
!
IF (iter.eq.0) par = zero
RETURN
!
! last card of subroutine lmpar.
!
END SUBROUTINE lmpar
SUBROUTINE qrfac (m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm,&
wa)
INTEGER m, n, lda, lipvt
INTEGER ipvt (lipvt)
LOGICAL pivot
DOUBLEPRECISION a (lda, n), rdiag (n), acnorm (n), wa (n)
! **********
!
! subroutine qrfac
!
! this subroutine uses householder transformations with column
! pivoting (optional) to compute a qr factorization of the
! m by n matrix a. that is, qrfac determines an orthogonal
! matrix q, a permutation matrix p, and an upper trapezoidal
! matrix r with diagonal elements of nonincreasing magnitude,
! such that a*p = q*r. the householder transformation for
! column k, k = 1,2,...,min(m,n), is of the form
!
! t
! i - (1/u(k))*u*u
!
! where u has zeros in the first k-1 positions. the form of
! this transformation and the method of pivoting first
! appeared in the corresponding linpack subroutine.
!
! the subroutine statement is
!
! subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
!
! where
!
! m is a positive integer input variable set to the number
! of rows of a.
!
! n is a positive integer input variable set to the number
! of columns of a.
!
! a is an m by n array. on input a contains the matrix for
! which the qr factorization is to be computed. on output
! the strict upper trapezoidal part of a contains the strict
! upper trapezoidal part of r, and the lower trapezoidal
! part of a contains a factored form of q (the non-trivial
! elements of the u vectors described above).
!
! lda is a positive integer input variable not less than m
! which specifies the leading dimension of the array a.
!
! pivot is a logical input variable. if pivot is set true,
! then column pivoting is enforced. if pivot is set false,
! then no column pivoting is done.
!
! ipvt is an integer output array of length lipvt. ipvt
! defines the permutation matrix p such that a*p = q*r.
! column j of p is column ipvt(j) of the identity matrix.
! if pivot is false, ipvt is not referenced.
!
! lipvt is a positive integer input variable. if pivot is false,
! then lipvt may be as small as 1. if pivot is true, then
! lipvt must be at least n.
!
! rdiag is an output array of length n which contains the
! diagonal elements of r.
!
! acnorm is an output array of length n which contains the
! norms of the corresponding columns of the input matrix a.
! if this information is not needed, then acnorm can coincide
! with rdiag.
!
! wa is a work array of length n. if pivot is false, then wa
! can coincide with rdiag.
!
! subprograms called
!
! minpack-supplied ... dpmpar,enorm
!
! fortran-supplied ... dmax1,dsqrt,min0
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
INTEGER i, j, jp1, k, kmax, minmn
DOUBLEPRECISION ajnorm, epsmch, one, p05, sum, temp, zero
!DOUBLEPRECISION dpmpar, enorm
DATA one, p05, zero / 1.0d0, 5.0d-2, 0.0d0 /
!
! epsmch is the machine precision.
!
epsmch = dpmpar (1)
!
! compute the initial column norms and initialize several arrays.
!
DO 10 j = 1, n
acnorm (j) = enorm (m, a (1, j) )
rdiag (j) = acnorm (j)
wa (j) = rdiag (j)
IF (pivot) ipvt (j) = j
10 END DO
!
! reduce a to r with householder transformations.
!
minmn = min0 (m, n)
DO 110 j = 1, minmn
IF (.not.pivot) goto 40
!
! bring the column of largest norm into the pivot position.
!
kmax = j
DO 20 k = j, n
IF (rdiag (k) .gt.rdiag (kmax) ) kmax = k
20 END DO
IF (kmax.eq.j) goto 40
DO 30 i = 1, m
temp = a (i, j)
a (i, j) = a (i, kmax)
a (i, kmax) = temp
30 END DO
rdiag (kmax) = rdiag (j)
wa (kmax) = wa (j)
k = ipvt (j)
ipvt (j) = ipvt (kmax)
ipvt (kmax) = k
40 CONTINUE
!
! compute the householder transformation to reduce the
! j-th column of a to a multiple of the j-th unit vector.
!
ajnorm = enorm (m - j + 1, a (j, j) )
IF (ajnorm.eq.zero) goto 100
IF (a (j, j) .lt.zero) ajnorm = - ajnorm
DO 50 i = j, m
a (i, j) = a (i, j) / ajnorm
50 END DO
a (j, j) = a (j, j) + one
!
! apply the transformation to the remaining columns
! and update the norms.
!
jp1 = j + 1
IF (n.lt.jp1) goto 100
DO 90 k = jp1, n
sum = zero
DO 60 i = j, m
sum = sum + a (i, j) * a (i, k)
60 END DO
temp = sum / a (j, j)
DO 70 i = j, m
a (i, k) = a (i, k) - temp * a (i, j)
70 END DO
IF (.not.pivot.or.rdiag (k) .eq.zero) goto 80
temp = a (j, k) / rdiag (k)
rdiag (k) = rdiag (k) * dsqrt (dmax1 (zero, one-temp**2) )
IF (p05 * (rdiag (k) / wa (k) ) **2.gt.epsmch) goto 80
rdiag (k) = enorm (m - j, a (jp1, k) )
wa (k) = rdiag (k)
80 CONTINUE
90 END DO
100 CONTINUE
rdiag (j) = - ajnorm
110 END DO
RETURN
!
! last card of subroutine qrfac.
!
END SUBROUTINE qrfac
SUBROUTINE qrsolv (n, r, ldr, ipvt, diag, qtb, x, sdiag, wa)
INTEGER n, ldr
INTEGER ipvt (n)
DOUBLEPRECISION r (ldr, n), diag (n), qtb (n), x (n), sdiag (n), &
wa (n)
! **********
!
! subroutine qrsolv
!
! given an m by n matrix a, an n by n diagonal matrix d,
! and an m-vector b, the problem is to determine an x which
! solves the system
!
! a*x = b , d*x = 0 ,
!
! in the least squares sense.
!
! this subroutine completes the solution of the problem
! if it is provided with the necessary information from the
! qr factorization, with column pivoting, of a. that is, if
! a*p = q*r, where p is a permutation matrix, q has orthogonal
! columns, and r is an upper triangular matrix with diagonal
! elements of nonincreasing magnitude, then qrsolv expects
! the full upper triangle of r, the permutation matrix p,
! and the first n components of (q transpose)*b. the system
! a*x = b, d*x = 0, is then equivalent to
!
! t t
! r*z = q *b , p *d*p*z = 0 ,
!
! where x = p*z. if this system does not have full rank,
! then a least squares solution is obtained. on output qrsolv
! also provides an upper triangular matrix s such that
!
! t t t
! p *(a *a + d*d)*p = s *s .
!
! s is computed within qrsolv and may be of separate interest.
!
! the subroutine statement is
!
! subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
!
! where
!
! n is a positive integer input variable set to the order of r.
!
! r is an n by n array. on input the full upper triangle
! must contain the full upper triangle of the matrix r.
! on output the full upper triangle is unaltered, and the
! strict lower triangle contains the strict upper triangle
! (transposed) of the upper triangular matrix s.
!
! ldr is a positive integer input variable not less than n
! which specifies the leading dimension of the array r.
!
! ipvt is an integer input array of length n which defines the
! permutation matrix p such that a*p = q*r. column j of p
! is column ipvt(j) of the identity matrix.
!
! diag is an input array of length n which must contain the
! diagonal elements of the matrix d.
!
! qtb is an input array of length n which must contain the first
! n elements of the vector (q transpose)*b.
!
! x is an output array of length n which contains the least
! squares solution of the system a*x = b, d*x = 0.
!
! sdiag is an output array of length n which contains the
! diagonal elements of the upper triangular matrix s.
!
! wa is a work array of length n.
!
! subprograms called
!
! fortran-supplied ... dabs,dsqrt
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
INTEGER i, j, jp1, k, kp1, l, nsing
DOUBLEPRECISION cos, cotan, p5, p25, qtbpj, sin, sum, tan, temp, &
zero
DATA p5, p25, zero / 5.0d-1, 2.5d-1, 0.0d0 /
!
! copy r and (q transpose)*b to preserve input and initialize s.
! in particular, save the diagonal elements of r in x.
!
DO 20 j = 1, n
DO 10 i = j, n
r (i, j) = r (j, i)
10 END DO
x (j) = r (j, j)
wa (j) = qtb (j)
20 END DO
!
! eliminate the diagonal matrix d using a givens rotation.
!
DO 100 j = 1, n
!
! prepare the row of d to be eliminated, locating the
! diagonal element using p from the qr factorization.
!
l = ipvt (j)
IF (diag (l) .eq.zero) goto 90
DO 30 k = j, n
sdiag (k) = zero
30 END DO
sdiag (j) = diag (l)
!
! the transformations to eliminate the row of d
! modify only a single element of (q transpose)*b
! beyond the first n, which is initially zero.
!
qtbpj = zero
DO 80 k = j, n
!
! determine a givens rotation which eliminates the
! appropriate element in the current row of d.
!
IF (sdiag (k) .eq.zero) goto 70
IF (dabs (r (k, k) ) .ge.dabs (sdiag (k) ) ) goto 40
cotan = r (k, k) / sdiag (k)
sin = p5 / dsqrt (p25 + p25 * cotan**2)
cos = sin * cotan
GOTO 50
40 CONTINUE
tan = sdiag (k) / r (k, k)
cos = p5 / dsqrt (p25 + p25 * tan**2)
sin = cos * tan
50 CONTINUE
!
! compute the modified diagonal element of r and
! the modified element of ((q transpose)*b,0).
!
r (k, k) = cos * r (k, k) + sin * sdiag (k)
temp = cos * wa (k) + sin * qtbpj
qtbpj = - sin * wa (k) + cos * qtbpj
wa (k) = temp
!
! accumulate the tranformation in the row of s.
!
kp1 = k + 1
IF (n.lt.kp1) goto 70
DO 60 i = kp1, n
temp = cos * r (i, k) + sin * sdiag (i)
sdiag (i) = - sin * r (i, k) + cos * sdiag (i)
r (i, k) = temp
60 END DO
70 CONTINUE
80 END DO
90 CONTINUE
!
! store the diagonal element of s and restore
! the corresponding diagonal element of r.
!
sdiag (j) = r (j, j)
r (j, j) = x (j)
100 END DO
!
! solve the triangular system for z. if the system is
! singular, then obtain a least squares solution.
!
nsing = n
DO 110 j = 1, n
IF (sdiag (j) .eq.zero.and.nsing.eq.n) nsing = j - 1
IF (nsing.lt.n) wa (j) = zero
110 END DO
IF (nsing.lt.1) goto 150
DO 140 k = 1, nsing
j = nsing - k + 1
sum = zero
jp1 = j + 1
IF (nsing.lt.jp1) goto 130
DO 120 i = jp1, nsing
sum = sum + r (i, j) * wa (i)
120 END DO
130 CONTINUE
wa (j) = (wa (j) - sum) / sdiag (j)
140 END DO
150 CONTINUE
!
! permute the components of z back to components of x.
!
DO 160 j = 1, n
l = ipvt (j)
x (l) = wa (j)
160 END DO
RETURN
!
! last card of subroutine qrsolv.
!
END SUBROUTINE qrsolv
END MODULE
!