quantum-espresso/XClib/xc_wrapper_mgga.f90

401 lines
13 KiB
Fortran

!
! Copyright (C) 2020 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-------------------------------------------------------------------------------------
SUBROUTINE xc_metagcx( length, ns, np, rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, &
v2c, v3c, gpu_args_ )
!----------------------------------------------------------------------------------
!! Wrapper to gpu or non gpu version of \(\texttt{xc_metagcx}\).
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
INTEGER, INTENT(IN) :: ns
!! spin components
INTEGER, INTENT(IN) :: np
!! first dimension of v2c
REAL(DP), INTENT(IN) :: rho(length,ns)
!! the charge density
REAL(DP), INTENT(IN) :: grho(3,length,ns)
!! grho = \nabla rho
REAL(DP), INTENT(IN) :: tau(length,ns)
!! kinetic energy density
REAL(DP), INTENT(OUT) :: ex(length)
!! sx = E_x(rho,grho)
REAL(DP), INTENT(OUT) :: ec(length)
!! sc = E_c(rho,grho)
REAL(DP), INTENT(OUT) :: v1x(length,ns)
!! v1x = D(E_x)/D(rho)
REAL(DP), INTENT(OUT) :: v2x(length,ns)
!! v2x = D(E_x)/D( D rho/D r_alpha ) / |\nabla rho|
REAL(DP), INTENT(OUT) :: v3x(length,ns)
!! v3x = D(E_x)/D(tau)
REAL(DP), INTENT(OUT) :: v1c(length,ns)
!! v1c = D(E_c)/D(rho)
REAL(DP), INTENT(OUT) :: v2c(np,length,ns)
!! v2c = D(E_c)/D( D rho/D r_alpha ) / |\nabla rho|
REAL(DP), INTENT(OUT) :: v3c(length,ns)
!! v3c = D(E_c)/D(tau)
LOGICAL, INTENT(IN), OPTIONAL :: gpu_args_
!! whether you wish to run on gpu in case use_gpu is true
!
LOGICAL :: gpu_args
!
gpu_args = .FALSE.
IF ( PRESENT(gpu_args_) ) gpu_args = gpu_args_
!
IF ( gpu_args ) THEN
!
!$acc data present( rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c )
CALL xc_metagcx_( length, ns, np, rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, &
v2c, v3c )
!$acc end data
!
ELSE
!
!$acc data copyin( rho, grho, tau ), copyout( ex, ec, v1x, v2x, v3x, v1c, v2c, v3c )
CALL xc_metagcx_( length, ns, np, rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, &
v2c, v3c )
!$acc end data
!
ENDIF
!
RETURN
!
END SUBROUTINE
!
!
!----------------------------------------------------------------------------------------
SUBROUTINE xc_metagcx_( length, ns, np, rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c )
!-------------------------------------------------------------------------------------
!! Wrapper routine. Calls internal metaGGA drivers or the Libxc ones,
!! depending on the input choice.
!
#if defined(__LIBXC)
#include "xc_version.h"
USE xc_f03_lib_m
USE dft_setting_params, ONLY: xc_func, libxc_flags
#endif
!
USE kind_l, ONLY: DP
USE dft_setting_params, ONLY: imeta, imetac, is_libxc, rho_threshold_mgga,&
grho2_threshold_mgga, tau_threshold_mgga, &
scan_exx, exx_started, exx_fraction
USE qe_drivers_mgga
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
INTEGER, INTENT(IN) :: ns
!! spin components
INTEGER, INTENT(IN) :: np
!! first dimension of v2c
REAL(DP), INTENT(IN) :: rho(length,ns)
!! the charge density
REAL(DP), INTENT(IN) :: grho(3,length,ns)
!! grho = \nabla rho
REAL(DP), INTENT(IN) :: tau(length,ns)
!! kinetic energy density
REAL(DP), INTENT(OUT) :: ex(length)
!! sx = E_x(rho,grho)
REAL(DP), INTENT(OUT) :: ec(length)
!! sc = E_c(rho,grho)
REAL(DP), INTENT(OUT) :: v1x(length,ns)
!! v1x = D(E_x)/D(rho)
REAL(DP), INTENT(OUT) :: v2x(length,ns)
!! v2x = D(E_x)/D( D rho/D r_alpha ) / |\nabla rho|
REAL(DP), INTENT(OUT) :: v3x(length,ns)
!! v3x = D(E_x)/D(tau)
REAL(DP), INTENT(OUT) :: v1c(length,ns)
!! v1c = D(E_c)/D(rho)
REAL(DP), INTENT(OUT) :: v2c(np,length,ns)
!! v2c = D(E_c)/D( D rho/D r_alpha ) / |\nabla rho|
REAL(DP), INTENT(OUT) :: v3c(length,ns)
!! v3c = D(E_c)/D(tau)
!
! ... local variables
!
INTEGER :: k, is, ipol
REAL(DP), ALLOCATABLE :: grho2(:,:)
REAL(DP), PARAMETER :: small = 1.E-10_DP
!
#if defined(__LIBXC)
REAL(DP), ALLOCATABLE :: rho_lxc(:), sigma(:), tau_lxc(:)
REAL(DP), ALLOCATABLE :: ex_lxc(:), ec_lxc(:)
REAL(DP), ALLOCATABLE :: vx_rho(:), vx_sigma(:), vx_tau(:)
REAL(DP), ALLOCATABLE :: vc_rho(:), vc_sigma(:), vc_tau(:)
REAL(DP), ALLOCATABLE :: lapl_rho(:), vlapl_rho(:) ! not used in QE
!
REAL(DP) :: rh, ggrho2, atau
#if (XC_MAJOR_VERSION > 4)
INTEGER(8) :: lengthxc
#else
INTEGER :: lengthxc
#endif
#endif
!
!$acc data present( rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c )
!
#if defined(__LIBXC)
lengthxc = length
!
ALLOCATE( rho_lxc(length*ns), sigma(length*np) )
ALLOCATE( tau_lxc(length*ns), lapl_rho(length*ns) )
!$acc data create( rho_lxc, sigma, tau_lxc, lapl_rho )
!
IF ( is_libxc(5) ) THEN
ALLOCATE( ex_lxc(length) )
ALLOCATE( vx_rho(length*ns), vx_sigma(length*np), vx_tau(length*ns) )
IF ( imetac==0 ) THEN
!$acc parallel loop
DO k = 1, length
ec(k) = 0.d0
DO is = 1, ns
v1c(k,is) = 0.d0 ; v3c(k,is) = 0.d0
DO ipol = 1, np
v2c(ipol,k,is) = 0.d0
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
IF ( is_libxc(6) ) THEN
ALLOCATE( ec_lxc(length) )
ALLOCATE( vc_rho(length*ns), vc_sigma(length*np), vc_tau(length*ns) )
IF ( imeta==0 ) THEN
!$acc parallel loop
DO k = 1, length
ex(k) = 0.d0
DO is = 1, ns
v1x(k,is) = 0.d0 ; v2x(k,is) = 0.d0 ; v3x(k,is) = 0.d0
ENDDO
ENDDO
ENDIF
ENDIF
IF ( ANY(is_libxc(5:6)) ) ALLOCATE( vlapl_rho(length*ns) )
!
IF ( ns == 1 ) THEN
!
!$acc parallel loop
DO k = 1, length
rho_lxc(k) = ABS( rho(k,1) )
sigma(k) = MAX( grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2, &
grho2_threshold_mgga )
tau_lxc(k) = MAX( tau(k,1), tau_threshold_mgga )
lapl_rho(k) = 0.d0
ENDDO
!
ELSE
!
!$acc parallel loop
DO k = 1, length
rho_lxc(2*k-1) = ABS( rho(k,1) )
rho_lxc(2*k) = ABS( rho(k,2) )
sigma(3*k-2) = MAX( grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2, &
grho2_threshold_mgga )
sigma(3*k-1) = grho(1,k,1) * grho(1,k,2) + grho(2,k,1) * grho(2,k,2) +&
grho(3,k,1) * grho(3,k,2)
sigma(3*k) = MAX( grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2, &
grho2_threshold_mgga )
tau_lxc(2*k-1) = MAX( tau(k,1), small )
tau_lxc(2*k) = MAX( tau(k,2), small )
lapl_rho(2*k-1) = 0.d0
lapl_rho(2*k) = 0.d0
ENDDO
!
ENDIF
!
!$acc update self( rho_lxc, sigma, tau_lxc, lapl_rho )
!
IF ( .NOT.is_libxc(5) .AND. imetac==0 ) THEN
IF (ns == 1) THEN
!
CALL tau_xc( length, rho(:,1), sigma, tau(:,1), ex, ec, v1x(:,1), &
v2x(:,1), v3x(:,1), v1c(:,1), v2c, v3c(:,1) )
!
ELSEIF (ns == 2) THEN
!
CALL tau_xc_spin( length, rho, grho, tau, ex, ec, v1x, v2x, v3x, &
v1c, v2c, v3c )
!
ENDIF
ENDIF
!
! ... META EXCHANGE
!
IF ( is_libxc(5) ) THEN
CALL xc_f03_func_set_dens_threshold( xc_func(5), rho_threshold_mgga )
IF (libxc_flags(5,0)==1) THEN
CALL xc_f03_mgga_exc_vxc( xc_func(5), lengthxc, rho_lxc(1), sigma(1), lapl_rho(1), tau_lxc(1), &
ex_lxc(1), vx_rho(1), vx_sigma(1), vlapl_rho(1), vx_tau(1) )
ELSE
CALL xc_f03_mgga_vxc( xc_func(5), lengthxc, rho_lxc(1), sigma(1), lapl_rho(1), tau_lxc(1), &
vx_rho(1), vx_sigma(1), vlapl_rho(1), vx_tau(1) )
ex_lxc = 0.d0
ENDIF
!
!$acc data copyin( ex_lxc, vx_rho, vx_sigma, vx_tau )
IF ( ns==1 ) THEN
!$acc parallel loop
DO k = 1, length
IF ( ABS(rho_lxc(k))<=rho_threshold_mgga .OR. &
sigma(k)<=grho2_threshold_mgga .OR. &
ABS(tau_lxc(k))<=rho_threshold_mgga ) THEN
ex(k) = 0.d0 ; v1x(k,1) = 0.d0
v2x(k,1) = 0.d0 ; v3x(k,1) = 0.d0
CYCLE
ENDIF
ex(k) = ex_lxc(k) * rho_lxc(k)
v1x(k,1) = vx_rho(k)
v2x(k,1) = vx_sigma(k) * 2.0_DP
v3x(k,1) = vx_tau(k)
ENDDO
ELSE
!$acc parallel loop
DO k = 1, length
IF (rho_lxc(2*k-1)+rho_lxc(2*k) <= rho_threshold_mgga) THEN
ex(k) = 0.d0
v1x(k,1) = 0.d0 ; v2x(k,1) = 0.d0 ; v3x(k,1) = 0.d0
v1x(k,2) = 0.d0 ; v2x(k,2) = 0.d0 ; v3x(k,2) = 0.d0
CYCLE
ENDIF
ex(k) = ex_lxc(k) * (rho_lxc(2*k-1)+rho_lxc(2*k))
IF ( ABS(rho_lxc(2*k-1))>rho_threshold_mgga .AND. &
sigma(3*k-2)>grho2_threshold_mgga .AND. &
ABS(tau_lxc(2*k-1))>tau_threshold_mgga ) THEN
v1x(k,1) = vx_rho(2*k-1)
v2x(k,1) = vx_sigma(3*k-2)*2.d0
v3x(k,1) = vx_tau(2*k-1)
ELSE
v1x(k,1) = 0.d0 ; v2x(k,1) = 0.d0 ; v3x(k,1) = 0.d0
ENDIF
IF ( ABS(rho_lxc(2*k))>rho_threshold_mgga .AND. &
sigma(3*k)>grho2_threshold_mgga .AND. &
ABS(tau_lxc(2*k))>tau_threshold_mgga ) THEN
v1x(k,2) = vx_rho(2*k)
v2x(k,2) = vx_sigma(3*k)*2.d0
v3x(k,2) = vx_tau(2*k)
ELSE
v1x(k,2) = 0.d0 ; v2x(k,2) = 0.d0 ; v3x(k,2) = 0.d0
ENDIF
ENDDO
ENDIF
!
!$acc end data
DEALLOCATE( ex_lxc, vx_rho, vx_sigma, vx_tau )
!
ENDIF
!
! ... META CORRELATION
!
IF ( is_libxc(6) ) THEN
!
CALL xc_f03_func_set_dens_threshold( xc_func(6), rho_threshold_mgga )
IF (libxc_flags(6,0)==1) THEN
CALL xc_f03_mgga_exc_vxc( xc_func(6), lengthxc, rho_lxc(1), sigma(1), lapl_rho(1), tau_lxc(1), &
ec_lxc(1), vc_rho(1), vc_sigma(1), vlapl_rho(1), vc_tau(1) )
ELSE
CALL xc_f03_mgga_vxc( xc_func(6), lengthxc, rho_lxc(1), sigma(1), lapl_rho(1), tau_lxc(1), &
vc_rho(1), vc_sigma(1), vlapl_rho(1), vc_tau(1) )
ec_lxc = 0.d0
ENDIF
!
!$acc data copyin( ec_lxc, vc_rho, vc_sigma, vc_tau )
IF ( ns==1 ) THEN
!$acc parallel loop
DO k = 1, length
IF ( ABS(rho_lxc(k))<=rho_threshold_mgga .OR. &
sigma(k)<=grho2_threshold_mgga .OR. &
ABS(tau_lxc(k))<=rho_threshold_mgga ) THEN
ec(k) = 0.d0 ; v1c(k,1) = 0.d0
v2c(1,k,1) = 0.d0 ; v3c(k,1) = 0.d0
CYCLE
ENDIF
ec(k) = ec_lxc(k) * rho_lxc(k)
v1c(k,1) = vc_rho(k)
v2c(1,k,1) = vc_sigma(k) * 2.0_DP
v3c(k,1) = vc_tau(k)
ENDDO
ELSE
!$acc parallel loop
DO k = 1, length
rh = rho_lxc(2*k-1) + rho_lxc(2*k)
atau = ABS(tau_lxc(2*k-1) + tau_lxc(2*k))
ggrho2 = (sigma(3*k-2) + sigma(3*k))*4.0_DP
IF ( rh <= rho_threshold_mgga .OR. &
ggrho2 <= grho2_threshold_mgga .OR. &
atau <= tau_threshold_mgga ) THEN
ec(k) = 0.d0
v1c(k,1) = 0.d0 ; v3c(k,1) = 0.d0
v1c(k,2) = 0.d0 ; v3c(k,2) = 0.d0
DO ipol = 1, 3
v2c(ipol,k,1) = 0.d0
v2c(ipol,k,2) = 0.d0
ENDDO
CYCLE
ENDIF
ec(k) = ec_lxc(k) * (rho_lxc(2*k-1)+rho_lxc(2*k))
v1c(k,1) = vc_rho(2*k-1)
v1c(k,2) = vc_rho(2*k)
DO ipol = 1, 3
v2c(ipol,k,1) = vc_sigma(3*k-2)*grho(ipol,k,1)*2.D0 + vc_sigma(3*k-1)*grho(ipol,k,2)
v2c(ipol,k,2) = vc_sigma(3*k) *grho(ipol,k,2)*2.D0 + vc_sigma(3*k-1)*grho(ipol,k,1)
ENDDO
v3c(k,1) = vc_tau(2*k-1)
v3c(k,2) = vc_tau(2*k)
ENDDO
ENDIF
!$acc end data
!
DEALLOCATE( ec_lxc, vc_rho, vc_sigma, vc_tau )
ENDIF
!
IF ( ANY(is_libxc(5:6)) ) DEALLOCATE( vlapl_rho )
!
!$acc end data
DEALLOCATE( rho_lxc, sigma, tau_lxc, lapl_rho )
!
#else
!
ALLOCATE( grho2(length,ns) )
!$acc data create( grho2 )
!
!$acc parallel loop collapse(2)
DO is = 1, ns
DO k = 1, length
grho2(k,is) = grho(1,k,is)**2 + grho(2,k,is)**2 + grho(3,k,is)**2
ENDDO
ENDDO
!
IF (ns == 1) THEN
!
CALL tau_xc( length, rho(:,1), grho2(:,1), tau(:,1), ex, ec, v1x(:,1), &
v2x(:,1), v3x(:,1), v1c(:,1), v2c, v3c(:,1) )
!
ELSEIF (ns == 2) THEN
!
CALL tau_xc_spin( length, rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, &
v2c, v3c )
!
ENDIF
!
!$acc end data
DEALLOCATE( grho2 )
!
#endif
!
!$acc end data
!
RETURN
!
END SUBROUTINE xc_metagcx_