quantum-espresso/Doc/INPUT_PP.def

452 lines
10 KiB
Modula-2

input_description -distribution {Quantum Espresso} -package PWscf -program pp.x {
toc {}
intro {
Purpose of pp.x: data analysis and plotting.
The code performs two steps:
(1) reads the output file produced by pw.x, extract and calculate
the desired quantity (rho, V, ...)
(2) writes the desired quantity to file in a suitable format for
various types of plotting and various plotting programs
The input data of this program are read from standard input
or from a file and have the following format:
NAMELIST &INPUTPP
containing the variables for step (1), followed by
NAMELIST &PLOT
containing the variables for step (2)
The two steps can be performed independently. In order to perform
only step (2), leave namelist &inputpp blank. In order to perform
only step (1), do not specify namelist &plot
Intermediate results from step 1 can be saved to disk (see
variable "filplot" in &inputpp) and later read in step 2.
Since the file with intermediate results is formatted, it
can be safely transferred to a different machine. This
also allows plotting of a linear combination (for instance,
charge differences) by saving two intermediate files and
combining them (see variables "weight" and "filepp" in &plot)
}
namelist INPUTPP {
var prefix -type CHARATER {
info {
prefix of files saved by program pw.x
}
}
var outdir -type CHARACTER {
info {
temporary directory where pw.x files resides
}
}
var filplot -type CHARACTER {
info {
file "filplot" contains the quantity selected by plot_num
(can be saved for further processing)
}
}
var plot_num -type INTEGER {
info {
selects what is saved in filplot:
0=charge
1=total potential V_bare+V_H + V_xc
2=local ionic potential
3=local density of states at e_fermi
4=local density of electronic entropy
5=STM images
6=spin polarization (rho(up)-rho(down))
7=|psi|^2
8=electron localization function (ELF)
9=planar average of all |psi|^2
10=integrated local density of states (ILDOS)
from emin to emax (emin, emax in eV)
if emax is not specified, emax=E_fermi
11=the V_bare + V_H potential
12=the electric field potential
13=the noncollinear magnetization.
}
}
choose {
when -test "plot_num=0" {
label {
Options for total charge (plot_num=0):
}
var spin_component -type INTEGER {
default 0
info {
0=total charge (default value),
1=spin up charge,
2=spin down charge.
}
}
}
elsewhen -test "plot_num=1" {
label {
Options for total potential (plot_num=1):
}
var spin_component -type INTEGER {
default 0
info {
0=spin averaged potential (default value),
1=spin up potential,
2=spin down potential.
}
}
}
elsewhen -test "plot_num=5" {
label {
Options for STM images (plot_num=5):
}
var sample_bias -type REAL {
info {
the bias of the sample (Ry) in stm images
}
}
var stm_wfc_matching -type LOGICAL {
info {
if .true. match the wavefunctions to an exponentially
vanishing function
if .true. specify also (in celldm(1) units): z and dz variables
}
}
if -test "stm_wfc_matching = .true." {
var z -type REAL {
info {
height of matching
}
}
var dz -type REAL {
info {
distance of next stm image calculation
}
}
}
}
elsewhen -test "plot_num=7" {
label {
Options for |psi|^2 (plot_num=7):
}
var kpoint -type INTEGER {
info {
Unpolarized and noncollinear case: k-point to be plotted
LSDA: k-point and spin polarization to be plotted
(spin-up and spin-down correspond to different k-points!)
}
}
var kband -type INTEGER {
info {
band to be plotted
}
}
var lsign -type LOGICAL {
info {
if true and k point is Gamma, save |psi|^2 sign(psi)
}
}
var spin_component -type INTEGER {
info {
Noncollinear case only:
plot the contribution of the given state to the charge
or to the magnetization along the direction indicated
by spin_component:
0 = charge (default),
1 = x,
2 = y,
3 = z.
Ignored in unpolarized or LSDA case
}
}
}
elsewhen -test "plot_num=10" {
label {
Options for ILDOS (plot_num=10):
}
var emin -type REAL {
info {
lower energy boundary (in eV)
}
}
var emax -type REAL {
info {
upper energy boundary (in eV), i.e. compute
ILDOS from emin to emax
}
}
var spin_component -type INTEGER {
info {
for LSDA case only: plot the contribution to ILDOS of
0 = spin-up + spin-down (default)
1 = spin-up only
2 = spin-down only
}
}
}
elsewhen -test "plot_num=13" {
label {
Options for noncollinear magnetization (plot_num=13):
}
var spin_component -type INTEGER {
default 0
info {
0=absolute value (default value)
1=x component of the magnetization
2=y component of the magnetization
3=z component of the magnetization
}
}
}
message {
Unfinished and untested option:
plot_num = 14, 15, 16 polarisation along x, y, z resp.
epsilon = macroscopic dielectric constant
}
}
}
# END of namelist &INPUTPP
# namelist PLOT
namelist PLOT {
var nfile -type INTEGER {
default 1
status OPTIONAL
info {
the number of data files
}
}
group {
#label { FOR i = 1, nfile: }
dimension filepp -start 1 -end nfile -type CHARACTER {
default { filepp(1)=filplot }
info {
nfile = 1 : file containing the quantity to be plotted
nfile > 1 : see "weight"
}
}
dimension weight -start 1 -end nfile -type REAL {
default { weight(1)=1.0 }
info {
weighing factors: assuming that rho(i) is the quantity
read from filepp(i), the quantity that will be plotted is:
weight(1)*rho(1) + weight(2)*rho(2) + weight(3)*rho(3)+...
}
}
#label {
# END_FOR
#}
message {
BEWARE: atomic coordinates are read from the first file;
if their number is different for different files,
the first file must have the largest number of atoms
}
}
var iflag -type INTEGER {
info {
0 1D plot of the spherical average
1 1D plot
2 2D plot
3 3D plot
4 2D polar plot on a sphere
}
}
var output_format -type INTEGER {
info {
(ignored on 1D plot)
0 format suitable for gnuplot (1D)
1 format suitable for contour.x (2D)
2 format suitable for plotrho (2D)
3 format suitable for XCRYSDEN (1D, 2D, 3D)
4 format suitable for gOpenMol (3D)
(formatted: convert to unformatted *.plt)
5 format suitable for XCRYSDEN (3D)
6 format as gaussian cube file (3D)
(can be read by many programs)
}
}
var fileout -type CHARACTER {
default { standard output }
info {
name of the file to which the plot is written
}
}
choose {
when -test "iflag = 0 or 1" {
label { the following variables are REQUIRED: }
dimension e1 -start 1 -end 3 -type REAL {
info {
3D vector which determines the plotting line
}
}
dimension x0 -start 1 -end 3 -type REAL {
info {
3D vector, origin of the line
}
}
message {
!!! x0 and e1 are in alat units !!!
}
var nx -type INTEGER {
info {
number of points in the line:
rho(i) = rho( x0 + e1 * (i-1)/(nx-1) ), i=1, nx
}
}
}
elsewhen -test "iflag = 2" {
label { the following variables are REQUIRED: }
dimensiongroup -start 1 -end 3 -type REAL {
dimension e1
dimension e2
info {
3D vectors which determine the plotting plane
(must be orthogonal)
}
}
dimension x0 -start 1 -end 3 -type REAL {
info {
3D vector, origin of the plane
}
}
message {
!!! x0, e1, e2 are in alat units !!!
}
vargroup -type INTEGER {
var nx
var ny
info {
Number of points in the plane:
rho(i,j) = rho( x0 + e1 * (i-1)/(nx-1)
+ e2 * (j-1)/(ny-1) ), i=1,nx ; j=1,ny
}
}
}
elsewhen -test "iflag = 3" {
label { the following variables are OPTIONAL: }
dimensiongroup -start 1 -end 3 -type REAL {
dimension e1
dimension e2
dimension e3
info {
3D vectors which determine the plotting parallelepiped
(if present, must be orthogonal)
}
}
dimension x0 -start 1 -end 3 -type REAL {
info {
3D vector, origin of the parallelepiped
}
}
message {
!!! x0, e1, e2, e3 are in alat units !!!
}
vargroup -type INTEGER {
var nx
var ny
var nz
info {
Number of points in the parallelepiped:
rho(i,j,k) = rho( x0 + e1 * (i-1)/nx
+ e2 * (j-1)/ny
+ e3 * (k-1)/nz ),
i = 1, nx ; j = 1, ny ; k = 1, nz
- If output_format = 3 (XCRYSDEN), the above variables
are used to determine the grid to plot.
- If output_format = 5 (XCRYSDEN), the above variables
are ignored, the entire FFT grid is written in the
XCRYSDEN format - works for any crystal axis (VERY FAST)
- If e1, e2, e3, x0 are present, e1 e2 e3 are parallel
to xyz and parallel to crystal axis, a subset of the
FFT grid that approximately covers the parallelepiped
defined by e1, e2, e3, x0, is written (presently only
if output_format = 4, i.e. gopenmol format) - works only
if the crystal axis are parallel to xyz
- Otherwise, the required 3D grid is generated from the
Fourier components (may be VERY slow)
}
}
}
elsewhen -test "iflag = 4" {
label { the following variables are REQUIRED: }
var radius -type REAL {
info {
Radius of the sphere (alat units), centered at (0,0,0)
}
}
var nx,ny -type INTEGER {
info {
Number of points in the polar plane:
phi(i) = 2 pi * (i - 1)/(nx-1), i=1, nx
theta(j) = pi * (j - 1)/(ny-1), j=1, ny
}
}
}
}
}
# END of namelist PLOT
}