quantum-espresso/PH/phq_setup.f90

373 lines
11 KiB
Fortran

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine phq_setup
!-----------------------------------------------------------------------
!
! This subroutine prepares several variables which are needed in the
! phonon program:
! 1) put the correct units on the masses
! 2) computes the total local potential (external+scf) on the smoot
! grid to be used in h_psi and similia
! 3) computes dmuxc 3.1) with GC if needed
! 4) set the inverse of every matrix invs
! 5) for metals sets the occupied bands
! 6) computes alpha_pv
! 7) computes the variables needed to pass to the pattern representation
! u the patterns
! t the matrices of the small group of q on the pattern basis
! tmq the matrix of the symmetry which sends q -> -q + G
! gi the G associated to each symmetry operation
! gimq the G of the q -> -q+G symmetry
! irgq the small group indices
! nsymq the order of the small group of q
! irotmq the index of the q->-q+G symmetry
! nirr the number of irreducible representation
! npert the dimension of each irreducible representation
! nmodes the number of modes
! minus_q true if there is a symmetry sending q -> -q+G
! 8) for testing purposes it sets ubar
! 9) set the variables needed to deal with nlcc
! 10) set the variables needed for the partial computation
! of the dynamical matrix
!
! Revised 1 Oct. 1995 by Andrea Dal Corso
! March 1997: nlcc stuff added (SdG)
! April 1997: parallel stuff added (SdG)
! Oct-Nov 1998: minor stuff added (SdG)
!
#include "f_defs.h"
!
USE ions_base, ONLY : tau, nat, ntyp => nsp
USE io_global, ONLY : stdout
use pwcom
USE atom, ONLY : nlcc
USE constants, ONLY : degspin
USE kinds, ONLY : DP
use phcom
USE control_flags, ONLY : iverbosity, modenum
implicit none
real(DP) :: rhotot, rhoup, rhodw, target, small, fac, xmax, emin, &
emax, dmxc
! total charge
! total up charge
! total down charge
! auxiliary variables used
! to set nbnd_occ in the metallic case
! minimum band energy
! maximum band energy
! computes derivative of xc potential
integer :: ir, table (48, 48), isym, jsym, irot, ik, ibnd, ipol, &
mu, nu, imode0, irr, ipert, na, it, nt
! counter on mesh points
! the multiplication table of the point g
! counter on symmetries
! counter on symmetries
! counter on rotations
! counter on k points
! counter on bands
! counter on polarizations
! counter on modes
! the starting mode
! counter on representation and perturbat
! counter on atoms
! counter on iterations
! counter on atomic type
logical :: sym (48)
! the symmetry operations
call start_clock ('phq_setup')
!
! 1) We start with the mass renormalization
!
! call DSCAL (ntyp, amconv, amass, 1)
! (now done in phq_readin.f90 to avoid to be done more than once)
!
!
! 2) Computes the total local potential (external+scf) on the smooth grid
!
call set_vrs (vrs, vltot, vr, nrxx, nspin, doublegrid)
!
! 2.a) Set non linear core correction stuff
!
nlcc_any = .false.
do nt = 1, ntyp
nlcc_any = nlcc_any.or.nlcc (nt)
enddo
if (nlcc_any) allocate (drc( ngm, ntyp))
!
! 3) Computes the derivative of the xc potential
!
dmuxc(:,:,:) = 0.d0
if (lsda) then
do ir = 1, nrxx
rhoup = rho (ir, 1) + 0.5d0 * rho_core (ir)
rhodw = rho (ir, 2) + 0.5d0 * rho_core (ir)
call dmxc_spin (rhoup, rhodw, dmuxc(ir,1,1), dmuxc(ir,2,1), &
dmuxc(ir,1,2), dmuxc(ir,2,2) )
enddo
else
do ir = 1, nrxx
rhotot = rho (ir, nspin) + rho_core (ir)
if (rhotot.gt.1.d-30) dmuxc (ir, 1, 1) = dmxc (rhotot)
if (rhotot.lt. - 1.d-30) dmuxc (ir, 1, 1) = - dmxc ( - rhotot)
enddo
endif
!
! 3.1) Setup all gradient correction stuff
!
call setup_dgc
!
! 4) Computes the inverse of each matrix
!
call multable (nsym, s, table)
do isym = 1, nsym
do jsym = 1, nsym
if (table (isym, jsym) .eq.1) invs (isym) = jsym
enddo
enddo
!
! 5) Computes the number of occupied bands for each k point
!
if (degauss.ne.0.d0) then
!
! discard conduction bands such that w0gauss(x,n) < small
!
! hint:
! small = 1.0333492677046d-2 ! corresponds to 2 gaussian sigma
! small = 6.9626525973374d-5 ! corresponds to 3 gaussian sigma
! small = 6.3491173359333d-8 ! corresponds to 4 gaussian sigma
!
small = 6.9626525973374d-5
!
! - appropriate limit for gaussian broadening (used for all ngauss)
!
xmax = sqrt ( - log (sqrt (pi) * small) )
!
! - appropriate limit for Fermi-Dirac
!
if (ngauss.eq. - 99) then
fac = 1.d0 / sqrt (small)
xmax = 2.d0 * log (0.5d0 * (fac + sqrt (fac * fac - 4.d0) ) )
endif
target = ef + xmax * degauss
do ik = 1, nks
do ibnd = 1, nbnd
if (et (ibnd, ik) .lt.target) nbnd_occ (ik) = ibnd
enddo
if (nbnd_occ (ik) .eq.nbnd) WRITE( stdout, '(5x,/,&
&"Possibly too few bands at point ", i4,3f10.5)') &
ik, (xk (ipol, ik) , ipol = 1, 3)
enddo
else if (ltetra) then
call errore('phq_setup','phonon + tetrahedra not implemented', 1)
else
if (lsda) call infomsg('phq_setup','occupation numbers probably wrong', -1)
do ik = 1, nks
nbnd_occ (ik) = nint (nelec) / degspin
enddo
endif
!
! 6) Computes alpha_pv
!
emin = et (1, 1)
do ik = 1, nks
do ibnd = 1, nbnd
emin = min (emin, et (ibnd, ik) )
enddo
enddo
#ifdef __PARA
! find the minimum across pools
call poolextreme (emin, -1)
#endif
if (degauss.ne.0.d0) then
emax = target
alpha_pv = emax - emin
else
emax = et (1, 1)
do ik = 1, nks
do ibnd = 1, nbnd
emax = max (emax, et (ibnd, ik) )
enddo
enddo
#ifdef __PARA
! find the maximum across pools
call poolextreme (emax, + 1)
#endif
alpha_pv = 2.d0 * (emax - emin)
endif
! avoid zero value for alpha_pv
alpha_pv = max (alpha_pv, 1.0d-2)
!
! 7) set all the variables needed to use the pattern representation
!
! allocate and calculate rtau, the rotated position of each atom
!
do isym = 1, nsym
sym (isym) = .true.
enddo
call sgam_ph (at, bg, nsym, s, irt, tau, rtau, nat, sym)
nmodes = 3 * nat
! if minus_q=.t. set_irr will search for
minus_q = (modenum .eq. 0)
! Sq=-q+G symmetry. On output minus_q=.t.
! if such a symmetry has been found
if (modenum .ne. 0) then
call set_irr_mode (nat, at, bg, xq, s, invs, nsym, rtau, irt, &
irgq, nsymq, minus_q, irotmq, t, tmq, max_irr_dim, u, npert, &
nirr, gi, gimq, iverbosity, modenum)
else
if (nsym.gt.1) then
call set_irr (nat, at, bg, xq, s, invs, nsym, rtau, irt, &
irgq, nsymq, minus_q, irotmq, t, tmq, max_irr_dim, u, npert, &
nirr, gi, gimq, iverbosity)
else
call set_irr_nosym (nat, at, bg, xq, s, invs, nsym, rtau, irt, &
irgq, nsymq, minus_q, irotmq, t, tmq, max_irr_dim, u, npert, &
nirr, gi, gimq, iverbosity)
endif
endif
if (fildrho.ne.' ') call io_pattern (fildrho,nirr,npert,u,+1)
!
! set maxirr if not already set
!
if (maxirr.le.0.or.maxirr.gt.nirr) maxirr = nirr + 1
if (niter_ph.lt.maxter) maxirr = 1
!
! set the alpha_mix parameter
!
do it = 2, niter_ph
if (alpha_mix (it) .eq.0.d0) alpha_mix (it) = alpha_mix (it - 1)
enddo
!
! 8) Set the ubar
!
ubar(:) =( 0.d0,0.d0)
!
! NB: the following instructions are for testing purposes of delta rho
! the user must know how many atoms there are in the system
!
! ubar(1)=(1.d-3,0.d0)
! ubar(5)=(1.d0,0.d0)
! ubar(6)=(1.d0,0.d0)
!
! 10) set the variables needed for the partial computation
!
if (nrapp.eq.0) then
if (nat_todo.eq.0) then
!
! The partial computation option is not used, compute all atoms
!
do na = 1, nat
atomo (na) = na
enddo
nat_todo = nat
endif
!
! Sets the atoms which must be computed: the requested atoms and all
! the symmetry related atoms
!
do na = 1, nat
ifat (na) = 0
enddo
do na = 1, nat_todo
ifat (atomo (na) ) = 1
do isym = 1, nsymq
irot = irgq (isym)
ifat (irt (irot, atomo (na) ) ) = 1
enddo
enddo
!
! Computes again nat_todo, prepare the list atomo and sets all_comp
!
nat_todo = 0
do na = 1, nat
if (ifat (na) .eq.1) then
nat_todo = nat_todo + 1
atomo (nat_todo) = na
endif
enddo
!
! Find the irreducible representations to be computed
!
imode0 = 0
do irr = 1, nirr
comp_irr (irr) = 0
do ipert = 1, npert (irr)
mu = imode0 + ipert
do na = 1, nat
if (ifat (na) .eq.1.and.comp_irr (irr) .eq.0) then
do ipol = 1, 3
nu = 3 * (na - 1) + ipol
if (abs (u (nu, mu) ) .gt.1.d-6) comp_irr (irr) = 1
enddo
endif
enddo
enddo
imode0 = imode0 + npert (irr)
enddo
else
if (nrapp.gt.nirr) call errore ('phq_setup', 'too many representati &
&on', 1)
do irr = 1, nirr
comp_irr (irr) = 0
do mu = 1, nrapp
if (list (mu) .eq.irr) comp_irr (irr) = 1
enddo
enddo
do na = 1, nat
ifat (na) = 0
enddo
imode0 = 0
do irr = 1, nirr
if (comp_irr (irr) .eq.1) then
do ipert = 1, npert (irr)
do na = 1, nat
do ipol = 1, 3
mu = 3 * (na - 1) + ipol
if (abs (u (mu, imode0 + ipert) ) .gt.1.d-12) ifat (na) &
= 1
enddo
enddo
enddo
endif
imode0 = imode0 + npert (irr)
enddo
nat_todo = 0
do na = 1, nat
if (ifat (na) .eq.1) then
nat_todo = nat_todo + 1
atomo (nat_todo) = na
endif
enddo
endif
!
! Initialize done_irr, find max dimension of the irreps
!
all_comp = nat_todo.eq.nat
npertx = 0
do irr = 1, nirr
done_irr (irr) = 0
npertx = max (npertx, npert (irr) )
enddo
call stop_clock ('phq_setup')
return
end subroutine phq_setup