quantum-espresso/tests/lattice-ibrav0-cell_paramet...

190 lines
6.8 KiB
Plaintext

Program PWSCF v.4.1CVS starts ...
Today is 21Nov2008 at 17: 5: 0
For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW
Current dimensions of program pwscf are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
WARNING: Pseudopotential # 1 file : H.pz-vbc.UPF
WARNING: WFC # 1(1S) IS NOT CORRECTLY NORMALIZED: norm= 0.999997
WARNING: WFC HAS BEEN NOW RENORMALIZED
gamma-point specific algorithms are used
bravais-lattice index = 0
lattice parameter (a_0) = 10.0000 a.u.
unit-cell volume = 2801.4279 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
number of electrons = 2.00
number of Kohn-Sham states= 1
kinetic-energy cutoff = 25.0000 Ry
charge density cutoff = 100.0000 Ry
convergence threshold = 1.0E-06
mixing beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation = SLA PZ NOGX NOGC (1100)
celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( 0.450000 1.430909 0.000000 )
a(3) = ( 0.400000 0.083863 1.957796 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 1.000000 -0.314485 -0.190840 )
b(2) = ( 0.000000 0.698856 -0.029936 )
b(3) = ( 0.000000 0.000000 0.510778 )
PseudoPot. # 1 for H read from file H.pz-vbc.UPF
Pseudo is Norm-conserving, Zval = 1.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 131 points, 0 beta functions with:
atomic species valence mass pseudopotential
H 1.00 1.00080 H ( 1.00)
2 Sym.Ops. (with inversion)
Cartesian axes
site n. atom positions (a_0 units)
1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 )
2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 )
number of k points= 1
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000
G cutoff = 253.3030 ( 23673 G-vectors) FFT grid: ( 32, 48, 64)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1)
NL pseudopotentials 0.00 Mb ( 2953, 0)
Each V/rho on FFT grid 1.50 Mb ( 98304)
Each G-vector array 0.18 Mb ( 23673)
G-vector shells 0.18 Mb ( 22997)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.09 Mb ( 2953, 4)
Each subspace H/S matrix 0.00 Mb ( 4, 4)
Each <psi_i|beta_j> matrix 0.00 Mb ( 0, 1)
Arrays for rho mixing 12.00 Mb ( 98304, 8)
Initial potential from superposition of free atoms
Check: negative starting charge= -0.003955
starting charge 1.99995, renormalised to 2.00000
negative rho (up, down): 0.395E-02 0.000E+00
Starting wfc are 2 atomic wfcs
total cpu time spent up to now is 0.12 secs
per-process dynamical memory: 12.1 Mb
Self-consistent Calculation
iteration # 1 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 1.00E-02, avg # of iterations = 2.0
negative rho (up, down): 0.114E-02 0.000E+00
total cpu time spent up to now is 0.17 secs
total energy = -2.22060066 Ry
Harris-Foulkes estimate = -2.29036772 Ry
estimated scf accuracy < 0.13245994 Ry
iteration # 2 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 6.62E-03, avg # of iterations = 1.0
negative rho (up, down): 0.245E-03 0.000E+00
total cpu time spent up to now is 0.21 secs
total energy = -2.23170190 Ry
Harris-Foulkes estimate = -2.23212319 Ry
estimated scf accuracy < 0.00094397 Ry
iteration # 3 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 4.72E-05, avg # of iterations = 2.0
negative rho (up, down): 0.403E-04 0.000E+00
total cpu time spent up to now is 0.26 secs
total energy = -2.23203759 Ry
Harris-Foulkes estimate = -2.23203878 Ry
estimated scf accuracy < 0.00001378 Ry
iteration # 4 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 6.89E-07, avg # of iterations = 1.0
total cpu time spent up to now is 0.30 secs
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev):
-10.3150
! total energy = -2.23203908 Ry
Harris-Foulkes estimate = -2.23203880 Ry
estimated scf accuracy < 0.00000041 Ry
The total energy is the sum of the following terms:
one-electron contribution = -3.65124991 Ry
hartree contribution = 1.92423141 Ry
xc contribution = -1.31189841 Ry
ewald contribution = 0.80687783 Ry
convergence has been achieved in 4 iterations
Writing output data file pwscf.save
PWSCF : 0.33s CPU time, 0.36s wall time
init_run : 0.11s CPU
electrons : 0.18s CPU
Called by init_run:
wfcinit : 0.00s CPU
potinit : 0.06s CPU
Called by electrons:
c_bands : 0.03s CPU ( 4 calls, 0.008 s avg)
sum_band : 0.04s CPU ( 4 calls, 0.009 s avg)
v_of_rho : 0.07s CPU ( 5 calls, 0.014 s avg)
mix_rho : 0.02s CPU ( 4 calls, 0.004 s avg)
Called by c_bands:
regterg : 0.03s CPU ( 4 calls, 0.008 s avg)
Called by *egterg:
h_psi : 0.03s CPU ( 11 calls, 0.003 s avg)
g_psi : 0.00s CPU ( 6 calls, 0.000 s avg)
rdiaghg : 0.00s CPU ( 10 calls, 0.000 s avg)
Called by h_psi:
General routines
cft3 : 0.02s CPU ( 15 calls, 0.001 s avg)
cft3s : 0.03s CPU ( 26 calls, 0.001 s avg)
davcio : 0.00s CPU ( 4 calls, 0.000 s avg)