quantum-espresso/tests/lattice-ibrav13-kauto.ref

197 lines
7.0 KiB
Plaintext

Program PWSCF v.4.1CVS starts ...
Today is 21Nov2008 at 17: 5: 4
For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW
Current dimensions of program pwscf are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
WARNING: Pseudopotential # 1 file : H.pz-vbc.UPF
WARNING: WFC # 1(1S) IS NOT CORRECTLY NORMALIZED: norm= 0.999997
WARNING: WFC HAS BEEN NOW RENORMALIZED
bravais-lattice index = 13
lattice parameter (a_0) = 10.0000 a.u.
unit-cell volume = 1492.4812 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
number of electrons = 2.00
number of Kohn-Sham states= 1
kinetic-energy cutoff = 25.0000 Ry
charge density cutoff = 100.0000 Ry
convergence threshold = 1.0E-06
mixing beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation = SLA PZ NOGX NOGC (1100)
celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000
celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 0.500000 0.000000 -1.000000 )
a(2) = ( 0.150000 1.492481 0.000000 )
a(3) = ( 0.500000 0.000000 1.000000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 1.000000 -0.100504 -0.500000 )
b(2) = ( 0.000000 0.670025 0.000000 )
b(3) = ( 1.000000 -0.100504 0.500000 )
PseudoPot. # 1 for H read from file H.pz-vbc.UPF
Pseudo is Norm-conserving, Zval = 1.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 131 points, 0 beta functions with:
atomic species valence mass pseudopotential
H 1.00 1.00080 H ( 1.00)
4 Sym.Ops. (with inversion)
Cartesian axes
site n. atom positions (a_0 units)
1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 )
2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 )
number of k points= 3
cart. coord. in units 2pi/a_0
k( 1) = ( 0.5000000 0.1172544 0.0000000), wk = 0.5000000
k( 2) = ( 0.0000000 0.1675063 -0.2500000), wk = 1.0000000
k( 3) = ( 0.5000000 -0.2177582 0.0000000), wk = 0.5000000
G cutoff = 253.3030 ( 25161 G-vectors) FFT grid: ( 36, 48, 36)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.05 Mb ( 3175, 1)
NL pseudopotentials 0.00 Mb ( 3175, 0)
Each V/rho on FFT grid 0.95 Mb ( 62208)
Each G-vector array 0.19 Mb ( 25161)
G-vector shells 0.04 Mb ( 5219)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.19 Mb ( 3175, 4)
Each subspace H/S matrix 0.00 Mb ( 4, 4)
Each <psi_i|beta_j> matrix 0.00 Mb ( 0, 1)
Arrays for rho mixing 7.59 Mb ( 62208, 8)
Initial potential from superposition of free atoms
Check: negative starting charge= -0.001481
starting charge 1.99995, renormalised to 2.00000
negative rho (up, down): 0.148E-02 0.000E+00
Starting wfc are 2 atomic wfcs
total cpu time spent up to now is 0.09 secs
per-process dynamical memory: 9.1 Mb
Self-consistent Calculation
iteration # 1 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 1.00E-02, avg # of iterations = 2.0
negative rho (up, down): 0.420E-03 0.000E+00
total cpu time spent up to now is 0.14 secs
total energy = -2.22004795 Ry
Harris-Foulkes estimate = -2.29021809 Ry
estimated scf accuracy < 0.13316217 Ry
iteration # 2 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 6.66E-03, avg # of iterations = 1.0
negative rho (up, down): 0.802E-04 0.000E+00
total cpu time spent up to now is 0.18 secs
total energy = -2.23102467 Ry
Harris-Foulkes estimate = -2.23147263 Ry
estimated scf accuracy < 0.00100472 Ry
iteration # 3 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 5.02E-05, avg # of iterations = 2.0
negative rho (up, down): 0.630E-05 0.000E+00
total cpu time spent up to now is 0.23 secs
total energy = -2.23131875 Ry
Harris-Foulkes estimate = -2.23131833 Ry
estimated scf accuracy < 0.00001136 Ry
iteration # 4 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 5.68E-07, avg # of iterations = 1.0
total cpu time spent up to now is 0.27 secs
End of self-consistent calculation
k = 0.5000 0.1173 0.0000 ( 3175 PWs) bands (ev):
-10.2185
k = 0.0000 0.1675-0.2500 ( 3139 PWs) bands (ev):
-10.2281
k = 0.5000-0.2178 0.0000 ( 3141 PWs) bands (ev):
-10.2171
! total energy = -2.23131983 Ry
Harris-Foulkes estimate = -2.23131976 Ry
estimated scf accuracy < 0.00000038 Ry
The total energy is the sum of the following terms:
one-electron contribution = -3.20428581 Ry
hartree contribution = 1.70924474 Ry
xc contribution = -1.31435719 Ry
ewald contribution = 0.57807843 Ry
convergence has been achieved in 4 iterations
Writing output data file pwscf.save
PWSCF : 0.31s CPU time, 0.34s wall time
init_run : 0.08s CPU
electrons : 0.18s CPU
Called by init_run:
wfcinit : 0.01s CPU
potinit : 0.02s CPU
Called by electrons:
c_bands : 0.07s CPU ( 4 calls, 0.018 s avg)
sum_band : 0.04s CPU ( 4 calls, 0.009 s avg)
v_of_rho : 0.05s CPU ( 5 calls, 0.010 s avg)
mix_rho : 0.02s CPU ( 4 calls, 0.005 s avg)
Called by c_bands:
cegterg : 0.07s CPU ( 12 calls, 0.006 s avg)
Called by *egterg:
h_psi : 0.08s CPU ( 33 calls, 0.002 s avg)
g_psi : 0.00s CPU ( 18 calls, 0.000 s avg)
cdiaghg : 0.00s CPU ( 30 calls, 0.000 s avg)
Called by h_psi:
General routines
cft3 : 0.03s CPU ( 15 calls, 0.002 s avg)
cft3s : 0.08s CPU ( 84 calls, 0.001 s avg)
davcio : 0.00s CPU ( 39 calls, 0.000 s avg)