quantum-espresso/PH/dgradcorr.f90

340 lines
11 KiB
Fortran

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------
subroutine dgradcorr (rho, grho, dvxc_rr, dvxc_sr, dvxc_ss, &
dvxc_s, xq, drho, nr1, nr2, nr3, nrx1, nrx2, nrx3, nrxx, nspin, &
nspin0, nl, ngm, g, alat, omega, dvxc)
! ===================
!--------------------------------------------------------------------
! Add Gradient Correction contribution to dvxc
! LSDA is allowed. ADC (September 1999)
! noncollinear is allowed. ADC (June 2007)
!
#include "f_defs.h"
USE kinds, ONLY : DP
USE gc_ph, ONLY : gmag, vsgga, segni
USE noncollin_module, ONLY : noncolin
USE spin_orb, ONLY : domag
implicit none
!
integer :: nr1, nr2, nr3, nrx1, nrx2, nrx3, nrxx, ngm, nl (ngm), &
nspin, nspin0
real(DP) :: rho (nrxx, nspin), grho (3, nrxx, nspin0), &
dvxc_rr(nrxx, nspin0, nspin0), dvxc_sr (nrxx, nspin0, nspin0), &
dvxc_ss (nrxx,nspin0, nspin0), dvxc_s (nrxx, nspin0, nspin0),&
g (3, ngm), xq(3), alat, omega
complex(DP) :: drho (nrxx, nspin), dvxc (nrxx, nspin)
real(DP), parameter :: epsr = 1.0d-6, epsg = 1.0d-10
real(DP) :: grho2, seg, seg0, amag
complex(DP) :: s1, fact, term
complex(DP) :: a (2, 2, 2), b (2, 2, 2, 2), c (2, 2, 2), &
ps (2, 2), ps1 (3, 2, 2), ps2 (3, 2, 2, 2)
complex(DP), allocatable :: gdrho (:,:,:), h (:,:,:), dh (:)
complex(DP), allocatable :: gdmag (:,:,:), dvxcsave(:,:), vgg(:,:)
complex(DP), allocatable :: drhoout(:,:)
real(DP), allocatable :: rhoout(:,:)
integer :: k, ipol, jpol, is, js, ks, ls
! write(6,*) 'enter dgradcor'
! do k=2,2
! write(6,'(3f20.5)') rho(k,1), drho(k,1), dvxc(k,1)
! enddo
if (noncolin.and.domag) then
allocate (gdmag(3, nrxx, nspin))
allocate (dvxcsave(nrxx, nspin))
allocate (vgg(nrxx, nspin0))
dvxcsave=dvxc
dvxc=(0.0_dp,0.0_dp)
endif
allocate (rhoout( nrxx, nspin0))
allocate (drhoout( nrxx, nspin0))
allocate (gdrho( 3, nrxx, nspin0))
allocate (h( 3, nrxx, nspin0))
allocate (dh( nrxx))
h (:, :, :) = (0.d0, 0.d0)
if (noncolin.and.domag) then
do is = 1, nspin
call qgradient (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, &
drho (1, is), ngm, g, nl, alat, gdmag (1, 1, is) )
enddo
DO is=1,nspin0
IF (is==1) seg0=0.5_dp
IF (is==2) seg0=-0.5_dp
rhoout(:,is) = 0.5_dp*rho(:,1)
drhoout(:,is) = 0.5_dp*drho(:,1)
DO ipol=1,3
gdrho(ipol,:,is) = 0.5_dp*gdmag(ipol,:,1)
ENDDO
DO k=1,nrxx
seg=seg0*segni(k)
amag=sqrt(rho(k,2)**2+rho(k,3)**2+rho(k,4)**2)
IF (amag>1.d-12) THEN
rhoout(k,is) = rhoout(k,is)+seg*amag
DO jpol=2,4
drhoout(k,is) = drhoout(k,is)+seg*rho(k,jpol)* &
drho(k,jpol)/amag
END DO
DO ipol=1,3
fact=(0.0_dp,0.0_dp)
DO jpol=2,4
fact=fact+rho(k,jpol)*drho(k,jpol)
END DO
DO jpol=2,4
gdrho(ipol,k,is) = gdrho(ipol,k,is)+ seg*( &
drho(k,jpol)*gmag(ipol,k,jpol)+ &
rho(k,jpol)*gdmag(ipol,k,jpol))/amag &
-seg*(rho(k,jpol)*gmag(ipol,k,jpol)*fact)/amag**3
END DO
END DO
END IF
END DO
END DO
ELSE
DO is = 1, nspin0
CALL qgradient (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, &
drho (1, is), ngm, g, nl, alat, gdrho (1, 1, is) )
rhoout(:,is)=rho(:,is)
drhoout(:,is)=drho(:,is)
ENDDO
ENDIF
! write(6,*) 'rhoout,gdrho'
! do k=2,2
! write(6,'(3f20.5)') rhoout(k,1), drhoout(k,1), grho(3,k,1), gdrho(3,k,1)
! write(6,'(3f20.5)') rhoout(k,2), drhoout(k,2), grho(3,k,2), gdrho(3,k,2)
! enddo
! write(6,*) 'done rhoout,gdrho'
do k = 1, nrxx
grho2 = grho(1, k, 1)**2 + grho(2, k, 1)**2 + grho(3, k, 1)**2
if (nspin == 1) then
!
! LDA case
!
if (abs (rho (k, 1) ) > epsr .and. grho2 > epsg) then
s1 = grho (1, k, 1) * gdrho (1, k, 1) + &
grho (2, k, 1) * gdrho (2, k, 1) + &
grho (3, k, 1) * gdrho (3, k, 1)
!
! linear variation of the first term
!
dvxc (k, 1) = dvxc (k, 1) + dvxc_rr (k, 1, 1) * drho (k, 1) &
+ dvxc_sr (k, 1, 1) * s1
do ipol = 1, 3
h (ipol, k, 1) = (dvxc_sr(k, 1, 1) * drho(k, 1) + &
dvxc_ss(k, 1, 1) * s1 )*grho(ipol, k, 1) + &
dvxc_s (k, 1, 1) * gdrho (ipol, k, 1)
enddo
else
do ipol = 1, 3
h (ipol, k, 1) = (0.d0, 0.d0)
enddo
endif
else
!
! LSDA case
!
ps (:,:) = (0.d0, 0.d0)
do is = 1, nspin0
do js = 1, nspin0
do ipol = 1, 3
ps1(ipol, is, js) = drhoout (k, is) * grho (ipol, k, js)
ps(is, js) = ps(is, js) + grho(ipol,k,is)*gdrho(ipol,k,js)
enddo
do ks = 1, nspin0
if (is == js .and. js == ks) then
a (is, js, ks) = dvxc_sr (k, is, is)
c (is, js, ks) = dvxc_sr (k, is, is)
else
if (is == 1) then
a (is, js, ks) = dvxc_sr (k, 1, 2)
else
a (is, js, ks) = dvxc_sr (k, 2, 1)
endif
if (js == 1) then
c (is, js, ks) = dvxc_sr (k, 1, 2)
else
c (is, js, ks) = dvxc_sr (k, 2, 1)
endif
endif
do ipol = 1, 3
ps2 (ipol, is, js, ks) = ps (is, js) * grho (ipol, k, ks)
enddo
do ls = 1, nspin0
if (is == js .and. js == ks .and. ks == ls) then
b (is, js, ks, ls) = dvxc_ss (k, is, is)
else
if (is == 1) then
b (is, js, ks, ls) = dvxc_ss (k, 1, 2)
else
b (is, js, ks, ls) = dvxc_ss (k, 2, 1)
endif
endif
enddo
enddo
enddo
enddo
do is = 1, nspin0
do js = 1, nspin0
dvxc (k, is) = dvxc (k, is) + dvxc_rr (k,is,js)*drhoout(k, js)
do ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
dvxc_s (k, is, js) * gdrho(ipol, k, js)
enddo
do ks = 1, nspin0
dvxc (k, is) = dvxc (k, is) + a (is, js, ks) * ps (js, ks)
do ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
c (is, js, ks) * ps1 (ipol, js, ks)
enddo
do ls = 1, nspin0
do ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
b (is, js, ks, ls) * ps2 (ipol, js, ks, ls)
enddo
enddo
enddo
enddo
enddo
endif
enddo
! linear variation of the second term
do is = 1, nspin0
call qgrad_dot (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, &
h (1, 1, is), ngm, g, nl, alat, dh)
do k = 1, nrxx
dvxc (k, is) = dvxc (k, is) - dh (k)
enddo
enddo
IF (noncolin.AND.domag) THEN
DO is=1,nspin0
vgg(:,is)=dvxc(:,is)
ENDDO
dvxc=dvxcsave
DO k=1,nrxx
dvxc(k,1)=dvxc(k,1)+0.5d0*(vgg(k,1)+vgg(k,2))
amag=sqrt(rho(k,2)**2+rho(k,3)**2+rho(k,4)**2)
IF (amag.GT.1.d-12) THEN
DO is=2,4
term=(0.0_dp,0.0_dp)
DO jpol=2,4
term=term+rho(k,jpol)*drho(k,jpol)
ENDDO
term=term*rho(k,is)/amag**2
dvxc(k,is)=dvxc(k,is)+0.5d0*segni(k)*((vgg(k,1)-vgg(k,2)) &
*rho(k,is)+vsgga(k)*(drho(k,is)-term))/amag
ENDDO
ENDIF
ENDDO
ENDIF
! do k=2,2
! write(6,'(3f20.5)') rho(k,1), drho(k,1), dvxc(k,1)
! enddo
! write(6,*) 'exit dgradcor'
deallocate (dh)
deallocate (h)
deallocate (gdrho)
deallocate (rhoout)
deallocate (drhoout)
if (noncolin.and.domag) then
deallocate (gdmag)
deallocate (dvxcsave)
deallocate (vgg)
endif
return
end subroutine dgradcorr
!
!--------------------------------------------------------------------
subroutine qgradient (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, &
a, ngm, g, nl, alat, ga)
!--------------------------------------------------------------------
! Calculates ga = \grad a in R-space (a is also in R-space)
USE kinds, only : DP
USE constants, ONLY: tpi
implicit none
integer :: nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, ngm, nl (ngm)
complex(DP) :: a (nrxx), ga (3, nrxx)
real(DP) :: g (3, ngm), alat, xq (3)
integer :: n, ipol
real(DP) :: tpiba
complex(DP), allocatable :: aux (:), gaux (:)
allocate (gaux( nrxx))
allocate (aux ( nrxx))
tpiba = tpi / alat
! bring a(r) to G-space, a(G) ...
aux (:) = a(:)
call cft3 (aux, nr1, nr2, nr3, nrx1, nrx2, nrx3, - 1)
! multiply by i(q+G) to get (\grad_ipol a)(q+G) ...
do ipol = 1, 3
gaux (:) = (0.d0, 0.d0)
do n = 1, ngm
gaux(nl(n)) = CMPLX(0.d0, xq (ipol) + g (ipol, n)) * aux (nl(n))
enddo
! bring back to R-space, (\grad_ipol a)(r) ...
call cft3 (gaux, nr1, nr2, nr3, nrx1, nrx2, nrx3, 1)
! ...and add the factor 2\pi/a missing in the definition of q+G
do n = 1, nrxx
ga (ipol, n) = gaux (n) * tpiba
enddo
enddo
deallocate (aux)
deallocate (gaux)
return
end subroutine qgradient
!--------------------------------------------------------------------
subroutine qgrad_dot (xq, nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, &
a, ngm, g, nl, alat, da)
!--------------------------------------------------------------------
! Calculates da = \sum_i \grad_i a_i in R-space
USE kinds, only : DP
USE constants, ONLY: tpi
implicit none
integer :: nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, ngm, nl (ngm)
complex(DP) :: a (3, nrxx), da (nrxx)
real(DP) :: xq (3), g (3, ngm), alat
integer :: n, ipol
real(DP) :: tpiba
complex(DP), allocatable :: aux (:)
allocate (aux (nrxx))
tpiba = tpi / alat
da(:) = (0.d0, 0.d0)
do ipol = 1, 3
! copy a(ipol,r) to a complex array...
do n = 1, nrxx
aux (n) = a (ipol, n)
enddo
! bring a(ipol,r) to G-space, a(G) ...
call cft3 (aux, nr1, nr2, nr3, nrx1, nrx2, nrx3, - 1)
! multiply by i(q+G) to get (\grad_ipol a)(q+G) ...
do n = 1, ngm
da (nl(n)) = da (nl(n)) + &
CMPLX(0.d0, xq (ipol) + g (ipol, n)) * aux(nl(n))
enddo
enddo
! bring back to R-space, (\grad_ipol a)(r) ...
call cft3 (da, nr1, nr2, nr3, nrx1, nrx2, nrx3, 1)
! ...add the factor 2\pi/a missing in the definition of q+G and sum
da (:) = da (:) * tpiba
deallocate (aux)
return
end subroutine qgrad_dot