quantum-espresso/tests/lattice-ibrav10.ref

217 lines
7.6 KiB
Plaintext

Program PWSCF v.4.1a starts ...
Today is 11Jul2009 at 9:30:29
For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW
Current dimensions of program pwscf are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
Waiting for input...
file H.pz-vbc.UPF: wavefunction(s) 1S renormalized
gamma-point specific algorithms are used
warning: symmetry operation # 2 not compatible with FFT grid.
0 -1 1
0 -1 0
1 -1 0
warning: symmetry operation # 3 not compatible with FFT grid.
-1 0 0
-1 0 1
-1 1 0
warning: symmetry operation # 4 not compatible with FFT grid.
0 1 -1
1 0 -1
0 0 -1
warning: symmetry operation # 6 not compatible with FFT grid.
0 1 -1
0 1 0
-1 1 0
warning: symmetry operation # 7 not compatible with FFT grid.
1 0 0
1 0 -1
1 -1 0
warning: symmetry operation # 8 not compatible with FFT grid.
0 -1 1
-1 0 1
0 0 1
bravais-lattice index = 10
lattice parameter (a_0) = 10.0000 a.u.
unit-cell volume = 750.0000 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
number of electrons = 2.00
number of Kohn-Sham states= 1
kinetic-energy cutoff = 25.0000 Ry
charge density cutoff = 100.0000 Ry
convergence threshold = 1.0E-06
mixing beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation = SLA PZ NOGX NOGC (1100)
celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 0.500000 0.000000 1.000000 )
a(2) = ( 0.500000 0.750000 0.000000 )
a(3) = ( 0.000000 0.750000 1.000000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 1.000000 -0.666667 0.500000 )
b(2) = ( 1.000000 0.666667 -0.500000 )
b(3) = ( -1.000000 0.666667 0.500000 )
PseudoPot. # 1 for H read from file H.pz-vbc.UPF
Pseudo is Norm-conserving, Zval = 1.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 131 points, 0 beta functions with:
atomic species valence mass pseudopotential
H 1.00 1.00080 H ( 1.00)
2 Sym.Ops. (with inversion)
Cartesian axes
site n. atom positions (a_0 units)
1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 )
2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 )
number of k points= 1
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000
G cutoff = 253.3030 ( 6360 G-vectors) FFT grid: ( 36, 30, 40)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.01 Mb ( 788, 1)
NL pseudopotentials 0.00 Mb ( 788, 0)
Each V/rho on FFT grid 0.66 Mb ( 43200)
Each G-vector array 0.05 Mb ( 6360)
G-vector shells 0.01 Mb ( 816)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.02 Mb ( 788, 4)
Each subspace H/S matrix 0.00 Mb ( 4, 4)
Each <psi_i|beta_j> matrix 0.00 Mb ( 0, 1)
Arrays for rho mixing 5.27 Mb ( 43200, 8)
Initial potential from superposition of free atoms
starting charge 1.99995, renormalised to 2.00000
negative rho (up, down): 0.411E-05 0.000E+00
Starting wfc are 2 atomic wfcs
total cpu time spent up to now is 0.03 secs
per-process dynamical memory: 5.0 Mb
Self-consistent Calculation
iteration # 1 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 1.00E-02, avg # of iterations = 2.0
negative rho (up, down): 0.190E-07 0.000E+00
total cpu time spent up to now is 0.05 secs
total energy = -2.22588529 Ry
Harris-Foulkes estimate = -2.29300716 Ry
estimated scf accuracy < 0.12816033 Ry
iteration # 2 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 6.41E-03, avg # of iterations = 1.0
total cpu time spent up to now is 0.07 secs
total energy = -2.23748144 Ry
Harris-Foulkes estimate = -2.23774916 Ry
estimated scf accuracy < 0.00065136 Ry
iteration # 3 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 3.26E-05, avg # of iterations = 2.0
total cpu time spent up to now is 0.09 secs
total energy = -2.23798767 Ry
Harris-Foulkes estimate = -2.23798558 Ry
estimated scf accuracy < 0.00002975 Ry
iteration # 4 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 1.49E-06, avg # of iterations = 1.0
total cpu time spent up to now is 0.11 secs
total energy = -2.23799020 Ry
Harris-Foulkes estimate = -2.23798873 Ry
estimated scf accuracy < 0.00000257 Ry
iteration # 5 ecut= 25.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 1.29E-07, avg # of iterations = 2.0
total cpu time spent up to now is 0.12 secs
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 788 PWs) bands (ev):
-10.2559
! total energy = -2.23799053 Ry
Harris-Foulkes estimate = -2.23799069 Ry
estimated scf accuracy < 0.00000028 Ry
The total energy is the sum of the following terms:
one-electron contribution = -2.59655948 Ry
hartree contribution = 1.39336955 Ry
xc contribution = -1.29969372 Ry
ewald contribution = 0.26489313 Ry
convergence has been achieved in 5 iterations
Writing output data file pwscf.save
PWSCF : 0.15s CPU time, 0.16s wall time
init_run : 0.02s CPU
electrons : 0.10s CPU
Called by init_run:
wfcinit : 0.00s CPU
potinit : 0.01s CPU
Called by electrons:
c_bands : 0.02s CPU ( 5 calls, 0.004 s avg)
sum_band : 0.02s CPU ( 5 calls, 0.004 s avg)
v_of_rho : 0.04s CPU ( 6 calls, 0.006 s avg)
mix_rho : 0.01s CPU ( 5 calls, 0.002 s avg)
Called by c_bands:
regterg : 0.02s CPU ( 5 calls, 0.004 s avg)
Called by *egterg:
h_psi : 0.02s CPU ( 14 calls, 0.001 s avg)
g_psi : 0.00s CPU ( 8 calls, 0.000 s avg)
rdiaghg : 0.00s CPU ( 13 calls, 0.000 s avg)
Called by h_psi:
General routines
cft3 : 0.02s CPU ( 18 calls, 0.001 s avg)
cft3s : 0.02s CPU ( 33 calls, 0.001 s avg)
davcio : 0.00s CPU ( 5 calls, 0.000 s avg)