quantum-espresso/PW/compute_qdipol.f90

125 lines
4.2 KiB
Fortran

!
! Copyright (C) 2001-2004 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
SUBROUTINE compute_qdipol(dpqq)
!
! This routine computes the term dpqq, i.e. the dipole moment of the
! augmentation charge. The output is given on cartesian coordinates
!
USE kinds, only: DP
USE constants, ONLY: fpi
USE atom, ONLY: rgrid
USE ions_base, ONLY: ntyp => nsp
USE uspp, only: nhtol, nhtolm, indv, nlx, ap
USE uspp_param, only: upf, nbetam, nh, nhm
implicit none
REAL(DP) :: dpqq( nhm, nhm, 3, ntyp)
real(DP), allocatable :: qrad2(:,:,:), qtot(:,:,:), aux(:)
real(DP) :: fact
integer :: nt, l, ir, nb, mb, ijv, ilast, ipol, ih, ivl, jh, jvl, lp, ndm
call start_clock('cmpt_qdipol')
ndm = MAXVAL ( upf(1:ntyp)%kkbeta )
allocate (qrad2( nbetam , nbetam, ntyp))
allocate (aux( ndm))
allocate (qtot( ndm, nbetam, nbetam))
qrad2(:,:,:)=0.d0
dpqq=0.d0
do nt = 1, ntyp
if ( upf(nt)%tvanp ) then
l=1
!
! Only l=1 terms enter in the dipole of Q
!
do nb = 1, upf(nt)%nbeta
do mb = nb, upf(nt)%nbeta
ijv = mb * (mb-1) /2 + nb
if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. &
( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. &
(mod (l+upf(nt)%lll(nb)+upf(nt)%lll(mb), 2) == 0) ) then
if (upf(nt)%q_with_l .or. upf(nt)%tpawp) then
qtot(1:upf(nt)%kkbeta,nb,mb) =&
upf(nt)%qfuncl(1:upf(nt)%kkbeta,ijv,l)
else
do ir = 1, upf(nt)%kkbeta
if (rgrid(nt)%r(ir) >= upf(nt)%rinner(l+1)) then
qtot(ir, nb, mb)=upf(nt)%qfunc(ir,ijv)
else
ilast = ir
endif
enddo
if ( upf(nt)%rinner(l+1) > 0.0_dp) &
call setqf( upf(nt)%qfcoef (1, l+1, nb, mb), &
qtot(1,nb,mb), rgrid(nt)%r, upf(nt)%nqf, l, ilast)
endif
endif
enddo
enddo
do nb=1, upf(nt)%nbeta
!
! the Q are symmetric with respect to indices
!
do mb=nb, upf(nt)%nbeta
if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. &
( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. &
(mod (l+upf(nt)%lll(nb)+upf(nt)%lll(mb), 2) == 0) ) then
do ir = 1, upf(nt)%kkbeta
aux(ir)=rgrid(nt)%r(ir)*qtot(ir, nb, mb)
enddo
call simpson ( upf(nt)%kkbeta, aux, rgrid(nt)%rab, &
qrad2(nb,mb,nt) )
endif
enddo
enddo
endif
! ntyp
enddo
do ipol = 1,3
fact=-sqrt(fpi/3.d0)
if (ipol.eq.1) lp=3
if (ipol.eq.2) lp=4
if (ipol.eq.3) then
lp=2
fact=-fact
endif
do nt = 1,ntyp
if ( upf(nt)%tvanp ) then
do ih = 1, nh(nt)
ivl = nhtolm(ih, nt)
mb = indv(ih, nt)
do jh = ih, nh (nt)
jvl = nhtolm(jh, nt)
nb=indv(jh,nt)
if (ivl > nlx) call errore('compute_qdipol',' ivl > nlx', ivl)
if (jvl > nlx) call errore('compute_qdipol',' jvl > nlx', jvl)
if (nb > nbetam) &
call errore('compute_qdipol',' nb out of bounds', nb)
if (mb > nbetam) &
call errore('compute_qdipol',' mb out of bounds', mb)
if (mb > nb) call errore('compute_qdipol',' mb > nb', 1)
dpqq(ih,jh,ipol,nt)=fact*ap(lp,ivl,jvl)*qrad2(mb,nb,nt)
dpqq(jh,ih,ipol,nt)=dpqq(ih,jh,ipol,nt)
! WRITE( stdout,'(3i5,2f15.9)') ih,jh,ipol,dpqq(ih,jh,ipol,nt)
enddo
enddo
endif
enddo
enddo
deallocate(qtot)
deallocate(aux)
deallocate(qrad2)
call stop_clock('cmpt_qdipol')
return
end subroutine compute_qdipol