quantum-espresso/XClib/xc_wrapper_gga.f90

537 lines
16 KiB
Fortran

!
! Copyright (C) 2020 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!---------------------------------------------------------------------------
SUBROUTINE xc_gcx( length, ns, rho, grho, ex, ec, v1x, v2x, v1c, v2c, v2c_ud, &
gpu_args_ )
!-------------------------------------------------------------------------
!! Wrapper to gpu or non gpu version of \(\texttt{xc_gcx}\).
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
INTEGER, INTENT(IN) :: ns
!! spin dimension for input
REAL(DP), INTENT(IN) :: rho(length,ns)
!! Charge density
REAL(DP), INTENT(IN) :: grho(3,length,ns)
!! gradient
REAL(DP), INTENT(OUT) :: ex(length)
!! exchange energy
REAL(DP), INTENT(OUT) :: ec(length)
!! correlation energy
REAL(DP), INTENT(OUT) :: v1x(length,ns)
!! exchange potential (density part)
REAL(DP), INTENT(OUT) :: v2x(length,ns)
!! exchange potential (gradient part)
REAL(DP), INTENT(OUT) :: v1c(length,ns)
!! correlation potential (density part)
REAL(DP), INTENT(OUT) :: v2c(length,ns)
!! correlation potential (gradient part)
REAL(DP), INTENT(OUT), OPTIONAL :: v2c_ud(length)
!! correlation potential, cross term
LOGICAL, INTENT(IN), OPTIONAL :: gpu_args_
!! whether you wish to run on gpu in case use_gpu is true
!
LOGICAL :: gpu_args
REAL(DP), ALLOCATABLE :: v2c_dummy(:)
!
gpu_args = .FALSE.
!
IF ( PRESENT(gpu_args_) ) gpu_args = gpu_args_
!
IF (ns==2 .AND. .NOT. PRESENT(v2c_ud)) CALL xclib_infomsg( 'xc_gcx', 'WARNING: cross &
&term v2c_ud not found xc_gcx (gga) call with polarized case' )
!
IF ( gpu_args ) THEN
!
!$acc data deviceptr( rho(length,ns), grho(3,length,ns), ex(length), ec(length), &
!$acc& v1x(length,ns), v2x(length,ns), v1c(length,ns), v2c(length,ns) )
IF (PRESENT(v2c_ud)) THEN
!$acc data deviceptr( v2c_ud(length) )
CALL xc_gcx_( length, ns, rho, grho, ex, ec, v1x, v2x, v1c, v2c, v2c_ud )
!$acc end data
ELSE
ALLOCATE( v2c_dummy(length) )
!$acc data deviceptr( v2c_dummy(length) )
CALL xc_gcx_( length, ns, rho, grho, ex, ec, v1x, v2x, v1c, v2c, v2c_dummy )
!$acc end data
DEALLOCATE( v2c_dummy )
ENDIF
!$acc end data
!
ELSE
!
!$acc data copyin( rho, grho ), copyout( ex, ec, v1x, v2x, v1c, v2c )
IF (PRESENT(v2c_ud)) THEN
!$acc data copyout( v2c_ud )
!$acc host_data use_device( rho, grho, ex, ec, v1x, v2x, v1c, v2c, v2c_ud )
CALL xc_gcx_( length, ns, rho, grho, ex, ec, v1x, v2x, v1c, v2c, v2c_ud )
!$acc end host_data
!$acc end data
ELSE
ALLOCATE( v2c_dummy(length) )
!$acc data create( v2c_dummy )
!$acc host_data use_device( rho, grho, ex, ec, v1x, v2x, v1c, v2c, v2c_dummy )
CALL xc_gcx_( length, ns, rho, grho, ex, ec, v1x, v2x, v1c, v2c, v2c_dummy )
!$acc end host_data
!$acc end data
DEALLOCATE( v2c_dummy )
ENDIF
!$acc end data
!
ENDIF
!
RETURN
!
END SUBROUTINE
!
!
!---------------------------------------------------------------------------
SUBROUTINE xc_gcx_( length, ns, rho, grho, ex, ec, v1x, v2x, v1c, v2c, v2c_ud )
!-------------------------------------------------------------------------
!! GGA wrapper routine - gpu double.
!
#if defined(__LIBXC)
#include "xc_version.h"
USE xc_f03_lib_m
USE dft_setting_params, ONLY: xc_func, xc_info, libxc_flags
#endif
!
USE kind_l, ONLY: DP
USE dft_setting_params, ONLY: igcx, igcc, is_libxc, rho_threshold_gga, &
grho_threshold_gga, rho_threshold_lda
USE qe_drivers_gga
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
INTEGER, INTENT(IN) :: ns
REAL(DP), INTENT(IN) :: rho(length,ns)
REAL(DP), INTENT(IN) :: grho(3,length,ns)
REAL(DP), INTENT(OUT) :: ex(length)
REAL(DP), INTENT(OUT) :: ec(length)
REAL(DP), INTENT(OUT) :: v1x(length,ns)
REAL(DP), INTENT(OUT) :: v2x(length,ns)
REAL(DP), INTENT(OUT) :: v1c(length,ns)
REAL(DP), INTENT(OUT) :: v2c(length,ns)
REAL(DP), INTENT(OUT) :: v2c_ud(length)
!
! ... local variables
!
#if defined(__LIBXC)
REAL(DP), ALLOCATABLE :: rho_lxc(:), sigma(:)
REAL(DP), ALLOCATABLE :: ex_lxc(:), ec_lxc(:)
REAL(DP), ALLOCATABLE :: vx_rho(:), vx_sigma(:)
REAL(DP), ALLOCATABLE :: vc_rho(:), vc_sigma(:)
!
INTEGER :: fkind_x, np
REAL(DP) :: rs, rtot, zet, vc_2(2), arho_k
REAL(DP), PARAMETER :: pi34 = 0.6203504908994_DP
!
LOGICAL :: POLARIZED
INTEGER :: ildax, ildac, pol_unpol
#if (XC_MAJOR_VERSION > 4)
INTEGER(8) :: lengthxc
#else
INTEGER :: lengthxc
#endif
#endif
REAL(DP), ALLOCATABLE :: rh(:), zeta(:)
REAL(DP), ALLOCATABLE :: grho2(:,:), grho_ud(:)
!
INTEGER :: k, is
REAL(DP) :: rho_up, rho_dw, grho_up, grho_dw, sgn1
REAL(DP), PARAMETER :: small = 1.E-10_DP
!
!$acc data deviceptr( rho(length,ns), grho(3,length,ns), ex(length), ec(length), &
!$acc& v1x(length,ns), v2x(length,ns), v1c(length,ns), v2c(length,ns), &
!$acc& v2c_ud(length) )
!
#if defined(__LIBXC)
!
fkind_x = -1
lengthxc = length
!
POLARIZED = .FALSE.
IF (ns == 2) THEN
POLARIZED = .TRUE.
ENDIF
!
pol_unpol = 1
np = 1
IF ( ns == 2 ) THEN
pol_unpol = 2
np = 3
ENDIF
!
ALLOCATE( rho_lxc(length*ns), sigma(length*np) )
!$acc data create( rho_lxc, sigma )
!
IF ( is_libxc(3) ) THEN
ALLOCATE( ex_lxc(length) )
ALLOCATE( vx_rho(length*ns), vx_sigma(length*np) )
ENDIF
IF ( is_libxc(4) ) THEN
ALLOCATE( ec_lxc(length) )
ALLOCATE( vc_rho(length*ns), vc_sigma(length*np) )
ENDIF
!
IF ( ns == 1 ) THEN
!
!$acc parallel loop
DO k = 1, length
arho_k = ABS(rho(k,1))
rho_lxc(k) = arho_k
IF ( arho_k > rho_threshold_gga ) &
sigma(k) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2
ENDDO
!
ELSE
!
!$acc parallel loop
DO k = 1, length
rho_lxc(2*k-1) = rho(k,1)
rho_lxc(2*k) = rho(k,2)
!
sigma(3*k-2) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2
sigma(3*k-1) = grho(1,k,1) * grho(1,k,2) + grho(2,k,1) * grho(2,k,2) + &
grho(3,k,1) * grho(3,k,2)
sigma(3*k) = grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2
ENDDO
!
ENDIF
!
IF ( ns==1 .AND. ANY(.NOT.is_libxc(3:4)) ) THEN
!
!$acc host_data use_device( rho_lxc, sigma )
CALL gcxc( length, rho_lxc, sigma, ex, ec, v1x(:,1), v2x(:,1), v1c(:,1), v2c(:,1) )
!$acc end host_data
!
!$acc parallel loop
DO k = 1, length
sgn1 = SIGN(1._DP, rho(k,1))
ex(k) = ex(k) * sgn1
ec(k) = ec(k) * sgn1
ENDDO
!
ENDIF
!
!$acc update self( rho_lxc, sigma )
!
! ---- GGA CORRELATION
!
IF ( is_libxc(4) ) THEN !lda part of LYP not present in libxc (still so? - check)
!
fkind_x = xc_f03_func_info_get_kind( xc_info(4) )
!
CALL xc_f03_func_set_dens_threshold( xc_func(4), small )!rho_threshold_gga )
IF (libxc_flags(4,0)==1) THEN
CALL xc_f03_gga_exc_vxc( xc_func(4), lengthxc, rho_lxc(1), sigma(1), ec_lxc(1), vc_rho(1), vc_sigma(1) )
ELSE
CALL xc_f03_gga_vxc( xc_func(4), lengthxc, rho_lxc(1), sigma(1), vc_rho(1), vc_sigma(1) )
ec_lxc = 0.d0
ENDIF
!
!$acc data copyin( ec_lxc, vc_rho, vc_sigma )
IF (.NOT. POLARIZED) THEN
!$acc parallel loop
DO k = 1, length
IF ( rho_lxc(k) <= rho_threshold_lda ) THEN
ec(k)=0.d0 ; v1c(k,1)=0.d0 ; v2c(k,1)=0.d0
CYCLE
ENDIF
ec(k) = ec_lxc(k) * rho_lxc(k) * SIGN(1.0_DP, rho(k,1))
v1c(k,1) = vc_rho(k)
IF ( rho_lxc(k) <= rho_threshold_gga .OR. &
SQRT(ABS(sigma(k))) <= grho_threshold_gga) THEN
v2c(k,1) = 0.d0
CYCLE
ENDIF
v2c(k,1) = vc_sigma(k)*2.d0
ENDDO
ELSE
!$acc parallel loop
DO k = 1, length
rho_up = rho_lxc(2*k-1)
rho_dw = rho_lxc(2*k)
grho_up = SQRT(ABS(sigma(3*k-2)))
grho_dw = SQRT(ABS(sigma(3*k)))
IF ( rho_up <= rho_threshold_lda .OR. rho_dw <= rho_threshold_lda ) THEN
ec(k) = 0.d0 ; v1c(k,1) = 0.d0 ; v1c(k,2) = 0.d0
v2c(k,1) = 0.d0 ; v2c_ud(k)= 0.d0 ; v2c(k,2) = 0.d0
CYCLE
ENDIF
ec(k) = ec_lxc(k) * (rho_up+rho_dw)
v1c(k,1) = vc_rho(2*k-1)
v1c(k,2) = vc_rho(2*k)
IF ( rho_up <= rho_threshold_gga .OR. rho_dw <= rho_threshold_gga .OR. &
grho_up<=grho_threshold_gga .OR. grho_dw<=grho_threshold_gga ) THEN
v2c(k,1) = 0.d0 ; v2c_ud(k)= 0.d0 ; v2c(k,2) = 0.d0
CYCLE
ENDIF
v2c(k,1) = vc_sigma(3*k-2)*2.d0
v2c_ud(k)= vc_sigma(3*k-1)
v2c(k,2) = vc_sigma(3*k)*2.d0
ENDDO
ENDIF
!
!$acc end data
DEALLOCATE( ec_lxc, vc_rho, vc_sigma )
!
ELSEIF ( (.NOT.is_libxc(4)) .AND. fkind_x/=XC_EXCHANGE_CORRELATION ) THEN
!
ALLOCATE( grho2(length,ns) )
!
IF ( ns /= 1 ) THEN
!
IF (igcc==3 .OR. igcc==7 .OR. igcc==13 ) THEN
!
ALLOCATE( grho_ud(length) )
!$acc data create( grho2, grho_ud )
!$acc parallel loop
DO k = 1, length
grho2(k,1) = sigma(3*k-2)
grho2(k,2) = sigma(3*k)
grho_ud(k) = sigma(3*k-1)
ENDDO
!$acc host_data use_device( grho2, grho_ud )
CALL gcc_spin_more( length, rho, grho2, grho_ud, ec, v1c, v2c, v2c_ud )
!$acc end host_data
!$acc end data
DEALLOCATE( grho_ud )
!
ELSE
!
ALLOCATE( rh(length), zeta(length) )
!$acc data create( rh, zeta, grho2 )
!$acc parallel loop
DO k = 1, length
rh(k) = rho(k,1) + rho(k,2)
IF ( rh(k) > rho_threshold_gga ) THEN
zeta(k) = ( rho(k,1) - rho(k,2) ) / rh(k)
ELSE
zeta(k) = 2.0_DP ! trash value, gcc-routines get rid of it when present
ENDIF
grho2(k,1) = ( grho(1,k,1) + grho(1,k,2) )**2 + &
( grho(2,k,1) + grho(2,k,2) )**2 + &
( grho(3,k,1) + grho(3,k,2) )**2
grho2(k,2) = grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2
ENDDO
!
!$acc host_data use_device( rh, zeta, grho2 )
CALL gcc_spin( length, rh, zeta, grho2(:,1), ec, v1c, v2c(:,1) )
!$acc end host_data
!
!$acc parallel loop
DO k = 1, length
v2c(k,2) = v2c(k,1)
IF ( ns==2 ) v2c_ud(k) = v2c(k,1)
ENDDO
!
!$acc end data
DEALLOCATE( rh, zeta )
!
ENDIF
!
ENDIF
!
DEALLOCATE( grho2 )
!
ENDIF
!
! --- GGA EXCHANGE
!
IF ( is_libxc(3) ) THEN
!
CALL xc_f03_func_set_dens_threshold( xc_func(3), grho_threshold_gga )
IF (libxc_flags(3,0)==1) THEN
CALL xc_f03_gga_exc_vxc( xc_func(3), lengthxc, rho_lxc(1), sigma(1), ex_lxc(1), vx_rho(1), vx_sigma(1) )
ELSE
CALL xc_f03_gga_vxc( xc_func(3), lengthxc, rho_lxc(1), sigma(1), vx_rho(1), vx_sigma(1) )
ex_lxc = 0.d0
ENDIF
!
!$acc data copyin( ex_lxc, vx_rho, vx_sigma )
IF (.NOT. POLARIZED) THEN
!$acc parallel loop
DO k = 1, length
IF ( rho_lxc(k) <= rho_threshold_lda ) THEN
ex(k) = 0.d0 ; v1x(k,1) = 0.d0 ; v2x(k,1) = 0.d0
CYCLE
ENDIF
ex(k) = ex_lxc(k) * rho_lxc(k) * SIGN(1.0_DP, rho(k,1))
v1x(k,1) = vx_rho(k)
IF ( rho_lxc(k) <= rho_threshold_gga .OR. &
SQRT(ABS(sigma(k))) <= grho_threshold_gga) THEN
v2x(k,1) = 0.d0
CYCLE
ENDIF
v2x(k,1) = vx_sigma(k)*2.d0
ENDDO
ELSE
!$acc parallel loop
DO k = 1, length
rho_up = rho_lxc(2*k-1)
rho_dw = rho_lxc(2*k)
grho_up = SQRT(ABS(sigma(3*k-2)))
grho_dw = SQRT(ABS(sigma(3*k)))
IF ( rho_up <= rho_threshold_lda .OR. rho_dw <= rho_threshold_lda ) THEN
ex(k) = 0.d0
v1x(k,1) = 0.d0 ; v1x(k,2) = 0.d0
v2x(k,1) = 0.d0 ; v2x(k,2) = 0.d0
CYCLE
ENDIF
ex(k) = ex_lxc(k) * (rho_up+rho_dw)
v1x(k,1) = vx_rho(2*k-1)
v1x(k,2) = vx_rho(2*k)
IF ( rho_up <= rho_threshold_gga .OR. rho_dw <= rho_threshold_gga .OR. &
grho_up<=grho_threshold_gga .OR. grho_dw<=grho_threshold_gga ) THEN
v2x(k,1) = 0.d0 ; v2x(k,2) = 0.d0
CYCLE
ENDIF
v2x(k,1) = vx_sigma(3*k-2)*2.d0
v2x(k,2) = vx_sigma(3*k)*2.d0
ENDDO
ENDIF
!
!$acc end data
DEALLOCATE( ex_lxc, vx_rho, vx_sigma )
!
ELSE
!
IF ( ns /= 1 ) THEN
!
ALLOCATE( grho2(length,ns) )
!$acc data create( grho2 )
!$acc parallel loop collapse(2)
DO is = 1, ns
DO k = 1, length
grho2(k,is) = grho(1,k,is)**2 + grho(2,k,is)**2 + grho(3,k,is)**2
ENDDO
ENDDO
!$acc host_data use_device( grho2 )
CALL gcx_spin( length, rho, grho2, ex, v1x, v2x )
!$acc end host_data
!$acc end data
DEALLOCATE( grho2 )
!
ENDIF
!
ENDIF
!
!$acc end data
DEALLOCATE( rho_lxc, sigma )
!
#else
!
ALLOCATE( grho2(length,ns) )
!$acc data create( grho2 )
!
IF ( ns == 1 ) THEN
!
ALLOCATE( rh(length) )
!$acc data create( rh )
!$acc host_data use_device( rh, grho2 )
!$acc parallel loop
DO k = 1, length
rh(k) = ABS(rho(k,1))
IF ( rh(k) > rho_threshold_gga ) &
grho2(k,1) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2
ENDDO
!
CALL gcxc( length, rh, grho2(:,1), ex, ec, v1x(:,1), v2x(:,1), v1c(:,1), v2c(:,1) )
!
!$acc parallel loop
DO k = 1, length
sgn1 = SIGN(1._DP, rho(k,1))
ex(k) = ex(k) * sgn1
ec(k) = ec(k) * sgn1
ENDDO
!
!$acc end host_data
!$acc end data
DEALLOCATE( rh )
!
ELSE
!
!$acc host_data use_device( grho2 )
!$acc parallel loop collapse(2)
DO is = 1, ns
DO k = 1, length
grho2(k,is) = grho(1,k,is)**2 + grho(2,k,is)**2 + grho(3,k,is)**2
ENDDO
ENDDO
!
CALL gcx_spin( length, rho, grho2, ex, v1x, v2x )
!$acc end host_data
!
IF (igcc==3 .OR. igcc==7 .OR. igcc==13 ) THEN
!
ALLOCATE( grho_ud(length) )
!$acc data create( grho_ud )
!$acc host_data use_device( grho_ud, grho2 )
!$acc parallel loop
DO k = 1, length
grho_ud(k) = grho(1,k,1) * grho(1,k,2) + grho(2,k,1) * grho(2,k,2) + &
grho(3,k,1) * grho(3,k,2)
ENDDO
!
CALL gcc_spin_more( length, rho, grho2, grho_ud, ec, v1c, v2c, v2c_ud )
!
!$acc end host_data
!$acc end data
DEALLOCATE( grho_ud )
!
ELSE
!
ALLOCATE( rh(length), zeta(length) )
!$acc data create( rh, zeta )
!$acc host_data use_device( rh, zeta, grho2 )
!$acc parallel loop
DO k = 1, length
rh(k) = rho(k,1) + rho(k,2)
IF ( rh(k) > rho_threshold_gga ) THEN
zeta(k) = ( rho(k,1) - rho(k,2) ) / rh(k)
ELSE
zeta(k) = 2.0_DP ! trash value, gcc-routines get rid of it when present
ENDIF
grho2(k,1) = ( grho(1,k,1) + grho(1,k,2) )**2 + &
( grho(2,k,1) + grho(2,k,2) )**2 + &
( grho(3,k,1) + grho(3,k,2) )**2
ENDDO
!
CALL gcc_spin( length, rh, zeta, grho2(:,1), ec, v1c, v2c(:,1) )
!
!$acc parallel loop
DO k = 1, length
v2c(k,2) = v2c(k,1)
IF ( ns==2 ) v2c_ud(k) = v2c(k,1)
ENDDO
!
!$acc end host_data
!$acc end data
DEALLOCATE( rh, zeta )
!
ENDIF
!
ENDIF
!
!$acc end data
DEALLOCATE( grho2 )
!
#endif
!
!$acc end data
!
RETURN
!
END SUBROUTINE xc_gcx_