quantum-espresso/PHonon/PH/compute_alphasum.f90

164 lines
5.9 KiB
Fortran

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine compute_alphasum
!-----------------------------------------------------------------------
!
! This routine computes the alphasum term which is used to compute the
! change of the charge due to the displacement of the augmentation
! term and a part of the US contribution to the dynamical matrix.
!
! It implements Eq.B17 of Ref.[1]. This quantity is distributed
! among processors.
! [1] PRB 64, 235118 (2001).
!
!
USE kinds, only : DP
USE ions_base, ONLY : nat, ityp, ntyp => nsp
USE lsda_mod, ONLY : current_spin, isk, lsda
USE wvfct, ONLY : nbnd, wg
USE noncollin_module, ONLY : noncolin, npol
USE uspp, ONLY: okvan
USE uspp_param, ONLY: upf, nh
USE paw_variables, ONLY : okpaw
USE phus, ONLY : alphasum, alphasum_nc, alphap
USE lrus, ONLY : becp1
USE qpoint, ONLY : nksq, ikks, ikqs
USE control_ph, ONLY : rec_code_read
USE control_lr, ONLY : nbnd_occ
implicit none
integer :: ik, ikk, ikq, ijkb0, ijh, ikb, jkb, ih, jh, na, nt, &
ipol, ibnd, is1, is2
! counter on k points
! counters on beta functions
! counters on beta functions
! counters for atoms
! counter on polarizations
! counter on bands
real(DP) :: wgg1
! auxiliary weight
if (.not.okvan) return
IF (rec_code_read >= -20.AND..NOT.okpaw) RETURN
alphasum = 0.d0
IF (noncolin) alphasum_nc=(0.d0,0.d0)
do ik = 1, nksq
ikk = ikks(ik)
ikq = ikqs(ik)
if (lsda) current_spin = isk (ikk)
ijkb0 = 0
do nt = 1, ntyp
if (upf(nt)%tvanp ) then
do na = 1, nat
if (ityp (na) == nt) then
ijh = 0
do ih = 1, nh (nt)
ikb = ijkb0 + ih
ijh = ijh + 1
do ibnd = 1, nbnd_occ (ikk)
wgg1 = wg (ibnd, ikk)
do ipol = 1, 3
IF (noncolin) THEN
DO is1=1,npol
DO is2=1,npol
alphasum_nc(ijh,ipol,na,is1,is2) = &
alphasum_nc(ijh,ipol,na,is1,is2)+wgg1* &
(CONJG(alphap(ipol,ik)%nc(ikb,is1,ibnd))*&
becp1(ik)%nc(ikb,is2,ibnd) + &
CONJG(becp1(ik)%nc(ikb,is1,ibnd))* &
alphap(ipol,ik)%nc(ikb,is2,ibnd))
END DO
END DO
ELSE
alphasum(ijh,ipol,na,current_spin) = &
alphasum(ijh,ipol,na,current_spin) + 2.d0*wgg1*&
DBLE (CONJG(alphap(ipol,ik)%k(ikb,ibnd) ) * &
becp1(ik)%k(ikb,ibnd) )
END IF
enddo
enddo
do jh = ih+1, nh (nt)
jkb = ijkb0 + jh
ijh = ijh + 1
do ibnd = 1, nbnd
wgg1 = wg (ibnd, ikk)
do ipol = 1, 3
IF (noncolin) THEN
DO is1=1,npol
DO is2=1,npol
alphasum_nc(ijh,ipol,na,is1,is2) = &
alphasum_nc(ijh,ipol,na,is1,is2) &
+wgg1* &
(CONJG(alphap(ipol,ik)%nc(ikb,is1,ibnd))* &
becp1(ik)%nc(jkb,is2,ibnd)+ &
CONJG(becp1(ik)%nc(ikb,is1,ibnd))* &
alphap(ipol,ik)%nc(jkb,is2,ibnd) )
END DO
END DO
ELSE
alphasum(ijh,ipol,na,current_spin) = &
alphasum(ijh,ipol,na,current_spin) + &
2.d0 * wgg1 * &
DBLE(CONJG(alphap(ipol,ik)%k(ikb,ibnd) )*&
becp1(ik)%k(jkb,ibnd) + &
CONJG( becp1(ik)%k(ikb,ibnd) ) * &
alphap(ipol,ik)%k(jkb,ibnd) )
END IF
enddo
enddo
enddo
enddo
ijkb0 = ijkb0 + nh (nt)
endif
enddo
else
do na = 1, nat
if (ityp (na) == nt) ijkb0 = ijkb0 + nh (nt)
enddo
endif
enddo
enddo
IF (noncolin.and.okvan) THEN
DO nt = 1, ntyp
IF ( upf(nt)%tvanp ) THEN
DO na = 1, nat
IF (ityp(na)==nt) THEN
IF (upf(nt)%has_so) THEN
CALL transform_alphasum_so(alphasum_nc,na)
ELSE
CALL transform_alphasum_nc(alphasum_nc,na)
END IF
END IF
END DO
END IF
END DO
END IF
! do na=1,nat
! nt=ityp(na)
! do ijh=1,nh(nt)*(nh(nt)+1)/2
! do ipol=1,3
! WRITE( stdout,'(3i5,f20.10)') na, ijh, ipol,
! + alphasum(ijh,ipol,na,1)
! enddo
! enddo
! enddo
! call stop_ph(.true.)
return
end subroutine compute_alphasum