quantum-espresso/test-suite/epw_super/benchmark.out.git.inp=epw_i...

564 lines
24 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
S. Ponce, E. R. Margine, C. Verdi, and F. Giustino,
Comput. Phys. Commun. 209, 116 (2016)
Program EPW v.5.1.0 starts on 2Apr2019 at 14:18: 6
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
MPI processes distributed on 1 nodes
Reading data from directory:
./MgB2.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation = PZ ( 1 1 0 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 379 379 151 6657 6657 1631
--
bravais-lattice index = 4
lattice parameter (a_0) = 5.8260 a.u.
unit-cell volume = 195.5871 (a.u.)^3
number of atoms/cell = 3
number of atomic types = 2
kinetic-energy cut-off = 40.0000 Ry
charge density cut-off = 160.0000 Ry
Exchange-correlation = PZ ( 1 1 0 0 0 0)
celldm(1)= 5.82603 celldm(2)= 0.00000 celldm(3)= 1.14207
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 1.0000 0.0000 0.0000 )
a(2) = ( -0.5000 0.8660 0.0000 )
a(3) = ( 0.0000 0.0000 1.1421 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 1.0000 0.5774 -0.0000 )
b(2) = ( 0.0000 1.1547 0.0000 )
b(3) = ( 0.0000 -0.0000 0.8756 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
1 Mg 24.3050 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 B 10.8110 tau( 2) = ( -0.00000 0.57735 0.57103 )
3 B 10.8110 tau( 3) = ( 0.50000 0.28868 0.57103 )
25 Sym.Ops. (with q -> -q+G )
G cutoff = 137.5641 ( 6657 G-vectors) FFT grid: ( 24, 24, 27)
number of k points= 27 gaussian broad. (Ry)= 0.0200 ngauss = 1
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741
k( 2) = ( 0.0000000 0.0000000 0.2918678), wk = 0.0740741
k( 3) = ( 0.0000000 0.0000000 0.5837357), wk = 0.0740741
k( 4) = ( 0.0000000 0.3849002 0.0000000), wk = 0.0740741
k( 5) = ( 0.0000000 0.3849002 0.2918678), wk = 0.0740741
k( 6) = ( 0.0000000 0.3849002 0.5837357), wk = 0.0740741
k( 7) = ( 0.0000000 0.7698004 0.0000000), wk = 0.0740741
k( 8) = ( 0.0000000 0.7698004 0.2918678), wk = 0.0740741
k( 9) = ( 0.0000000 0.7698004 0.5837357), wk = 0.0740741
k( 10) = ( 0.3333333 0.1924501 0.0000000), wk = 0.0740741
k( 11) = ( 0.3333333 0.1924501 0.2918678), wk = 0.0740741
k( 12) = ( 0.3333333 0.1924501 0.5837357), wk = 0.0740741
k( 13) = ( 0.3333333 0.5773503 0.0000000), wk = 0.0740741
k( 14) = ( 0.3333333 0.5773503 0.2918678), wk = 0.0740741
k( 15) = ( 0.3333333 0.5773503 0.5837357), wk = 0.0740741
k( 16) = ( 0.3333333 0.9622504 0.0000000), wk = 0.0740741
k( 17) = ( 0.3333333 0.9622504 0.2918678), wk = 0.0740741
k( 18) = ( 0.3333333 0.9622504 0.5837357), wk = 0.0740741
k( 19) = ( 0.6666667 0.3849002 0.0000000), wk = 0.0740741
k( 20) = ( 0.6666667 0.3849002 0.2918678), wk = 0.0740741
k( 21) = ( 0.6666667 0.3849002 0.5837357), wk = 0.0740741
k( 22) = ( 0.6666667 0.7698004 0.0000000), wk = 0.0740741
k( 23) = ( 0.6666667 0.7698004 0.2918678), wk = 0.0740741
k( 24) = ( 0.6666667 0.7698004 0.5837357), wk = 0.0740741
k( 25) = ( 0.6666667 1.1547005 0.0000000), wk = 0.0740741
k( 26) = ( 0.6666667 1.1547005 0.2918678), wk = 0.0740741
k( 27) = ( 0.6666667 1.1547005 0.5837357), wk = 0.0740741
PseudoPot. # 1 for Mg read from file:
../../pseudo/Mg.pz-n-vbc.UPF
MD5 check sum: adf9ca49345680d0fd32b5bc0752f25b
Pseudo is Norm-conserving + core correction, Zval = 2.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
PseudoPot. # 2 for B read from file:
../../pseudo/B.pz-vbc.UPF
MD5 check sum: 57e6d61f6735028425feb5bdf19679fb
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 157 points, 1 beta functions with:
l(1) = 0
EPW : 0.07s CPU 0.07s WALL
EPW : 0.11s CPU 0.11s WALL
No wavefunction gauge setting applied
-------------------------------------------------------------------
Wannierization on 3 x 3 x 3 electronic grid
-------------------------------------------------------------------
Spin CASE ( default = unpolarized )
Initializing Wannier90
Initial Wannier projections
( 0.33333 0.66667 0.50000) : l = 1 mr = 1
( 0.66667 0.33333 0.50000) : l = 1 mr = 1
( 0.50000 1.00000 0.50000) : l = 0 mr = 1
( 0.00000 0.50000 0.50000) : l = 0 mr = 1
( 0.50000 0.50000 0.50000) : l = 0 mr = 1
- Number of bands is ( 8)
- Number of total bands is ( 8)
- Number of excluded bands is ( 0)
- Number of wannier functions is ( 5)
- All guiding functions are given
Reading data about k-point neighbours
- All neighbours are found
AMN
k points = 27 in 1 pools
1 of 27 on ionode
2 of 27 on ionode
3 of 27 on ionode
4 of 27 on ionode
5 of 27 on ionode
6 of 27 on ionode
7 of 27 on ionode
8 of 27 on ionode
9 of 27 on ionode
10 of 27 on ionode
11 of 27 on ionode
12 of 27 on ionode
13 of 27 on ionode
14 of 27 on ionode
15 of 27 on ionode
16 of 27 on ionode
17 of 27 on ionode
18 of 27 on ionode
19 of 27 on ionode
20 of 27 on ionode
21 of 27 on ionode
22 of 27 on ionode
23 of 27 on ionode
24 of 27 on ionode
25 of 27 on ionode
26 of 27 on ionode
27 of 27 on ionode
AMN calculated
MMN
k points = 27 in 1 pools
1 of 27 on ionode
2 of 27 on ionode
3 of 27 on ionode
4 of 27 on ionode
5 of 27 on ionode
6 of 27 on ionode
7 of 27 on ionode
8 of 27 on ionode
9 of 27 on ionode
10 of 27 on ionode
11 of 27 on ionode
12 of 27 on ionode
13 of 27 on ionode
14 of 27 on ionode
15 of 27 on ionode
16 of 27 on ionode
17 of 27 on ionode
18 of 27 on ionode
19 of 27 on ionode
20 of 27 on ionode
21 of 27 on ionode
22 of 27 on ionode
23 of 27 on ionode
24 of 27 on ionode
25 of 27 on ionode
26 of 27 on ionode
27 of 27 on ionode
MMN calculated
Running Wannier90
Wannier Function centers (cartesian, alat) and spreads (ang):
( -0.00000 0.57735 0.38316) : 1.77659
( 0.50000 0.28868 0.38315) : 1.77661
( 0.00000 0.86603 0.66488) : 1.07401
( -0.25000 0.43301 0.66488) : 1.07401
( 0.25000 0.43301 0.66488) : 1.07401
-------------------------------------------------------------------
WANNIER : 4.62s CPU 4.65s WALL ( 1 calls)
-------------------------------------------------------------------
Dipole matrix elements calculated
Calculating kgmap
Progress kgmap: ########################################
kmaps : 0.70s CPU 0.72s WALL ( 1 calls)
Symmetries of Bravais lattice: 24
Symmetries of crystal: 24
===================================================================
irreducible q point # 1
===================================================================
Symmetries of small group of q: 24
in addition sym. q -> -q+G:
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Imposing acoustic sum rule on the dynamical matrix
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
===================================================================
irreducible q point # 2
===================================================================
Symmetries of small group of q: 12
Number of q in the star = 2
List of q in the star:
1 0.000000000 0.000000000 0.291867841
2 0.000000000 0.000000000 -0.291867841
q( 2 ) = ( 0.0000000 0.0000000 0.2918678 )
q( 3 ) = ( 0.0000000 0.0000000 -0.2918678 )
===================================================================
irreducible q point # 3
===================================================================
Symmetries of small group of q: 4
Number of q in the star = 6
List of q in the star:
1 0.000000000 0.384900179 0.000000000
2 0.333333333 0.192450090 0.000000000
3 -0.333333333 0.192450090 0.000000000
4 0.000000000 -0.384900179 0.000000000
5 -0.333333333 -0.192450090 0.000000000
6 0.333333333 -0.192450090 0.000000000
q( 4 ) = ( 0.0000000 0.3849002 0.0000000 )
q( 5 ) = ( 0.3333333 0.1924501 0.0000000 )
q( 6 ) = ( -0.3333333 0.1924501 0.0000000 )
q( 7 ) = ( 0.0000000 -0.3849002 0.0000000 )
q( 8 ) = ( -0.3333333 -0.1924501 0.0000000 )
q( 9 ) = ( 0.3333333 -0.1924501 0.0000000 )
===================================================================
irreducible q point # 4
===================================================================
Symmetries of small group of q: 2
Number of q in the star = 12
List of q in the star:
1 0.000000000 0.384900179 0.291867841
2 0.000000000 0.384900179 -0.291867841
3 0.333333333 0.192450090 0.291867841
4 -0.333333333 0.192450090 0.291867841
5 0.000000000 -0.384900179 0.291867841
6 -0.333333333 -0.192450090 0.291867841
7 0.333333333 -0.192450090 0.291867841
8 0.000000000 -0.384900179 -0.291867841
9 0.333333333 -0.192450090 -0.291867841
10 -0.333333333 -0.192450090 -0.291867841
11 0.333333333 0.192450090 -0.291867841
12 -0.333333333 0.192450090 -0.291867841
q( 10 ) = ( 0.0000000 0.3849002 0.2918678 )
q( 11 ) = ( 0.0000000 0.3849002 -0.2918678 )
q( 12 ) = ( 0.3333333 0.1924501 0.2918678 )
q( 13 ) = ( -0.3333333 0.1924501 0.2918678 )
q( 14 ) = ( 0.0000000 -0.3849002 0.2918678 )
q( 15 ) = ( -0.3333333 -0.1924501 0.2918678 )
q( 16 ) = ( 0.3333333 -0.1924501 0.2918678 )
q( 17 ) = ( 0.0000000 -0.3849002 -0.2918678 )
q( 18 ) = ( 0.3333333 -0.1924501 -0.2918678 )
q( 19 ) = ( -0.3333333 -0.1924501 -0.2918678 )
q( 20 ) = ( 0.3333333 0.1924501 -0.2918678 )
q( 21 ) = ( -0.3333333 0.1924501 -0.2918678 )
===================================================================
irreducible q point # 5
===================================================================
Symmetries of small group of q: 12
Number of q in the star = 2
List of q in the star:
1 0.333333333 0.577350269 0.000000000
2 -0.333333333 -0.577350269 0.000000000
q( 22 ) = ( 0.3333333 0.5773503 0.0000000 )
q( 23 ) = ( -0.3333333 -0.5773503 0.0000000 )
===================================================================
irreducible q point # 6
===================================================================
Symmetries of small group of q: 6
Number of q in the star = 4
List of q in the star:
1 0.333333333 0.577350269 0.291867841
2 0.333333333 -0.577350269 -0.291867841
3 -0.333333333 -0.577350269 -0.291867841
4 -0.333333333 0.577350269 0.291867841
q( 24 ) = ( 0.3333333 0.5773503 0.2918678 )
q( 25 ) = ( 0.3333333 -0.5773503 -0.2918678 )
q( 26 ) = ( -0.3333333 -0.5773503 -0.2918678 )
q( 27 ) = ( -0.3333333 0.5773503 0.2918678 )
Writing epmatq on .epb files
The .epb files have been correctly written
Band disentanglement is used: nbndsub = 5
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 39
Number of WS vectors for phonons 39
Number of WS vectors for electron-phonon 39
Maximum number of cores for efficient parallelization 351
Results may improve by using use_ws == .true.
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
Reading Hamiltonian, Dynamical matrix and EP vertex in Wann rep from file
Finished reading Wann rep data from file
===================================================================
Memory usage: VmHWM = 46Mb
VmPeak = 317Mb
===================================================================
Using uniform q-mesh: 6 6 6
Size of q point mesh for interpolation: 216
Using uniform MP k-mesh: 6 6 6
Size of k point mesh for interpolation: 56
Max number of k points per pool: 56
Fermi energy coarse grid = 8.175432 eV
Fermi energy is calculated from the fine k-mesh: Ef = 7.664497 eV
Warning: check if difference with Fermi level fine grid makes sense
===================================================================
ibndmin = 1 ebndmin = -0.357
ibndmax = 5 ebndmax = 1.152
Number of ep-matrix elements per pool : 6300 ~= 49.22 Kb (@ 8 bytes/ DP)
Nr. of irreducible k-points on the uniform grid: 28
Finished writing .ikmap file
Finished mapping k+sign*q onto the fine irreducibe k-mesh
Nr irreducible k-points within the Fermi shell = 28 out of 28
Progression iq (fine) = 100/ 216
Progression iq (fine) = 200/ 216
Fermi level (eV) = 0.766449682987715D+01
DOS(states/spin/eV/Unit Cell) = 0.913425062442885D+00
Electron smearing (eV) = 0.100000000000000D+00
Fermi window (eV) = 0.200000000000000D+02
Finished writing .ephmat files
===================================================================
Memory usage: VmHWM = 46Mb
VmPeak = 317Mb
===================================================================
===================================================================
Solve isotropic Eliashberg equations
===================================================================
Finish reading .freq file
Fermi level (eV) = 7.6644968299E+00
DOS(states/spin/eV/Unit Cell) = 9.1342506244E-01
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 2.0000000000E+01
Nr irreducible k-points within the Fermi shell = 28 out of 28
5 bands within the Fermi window
Finish reading .egnv file
Max nr of q-points = 216
Finish reading .ikmap files
Start reading .ephmat files
Finish reading .ephmat files
lambda_max = 126.3632787 lambda_k_max = 3.2077041
Electron-phonon coupling strength = 0.8715788
Estimated Allen-Dynes Tc = 26.4177675 K for muc = 0.16000
Estimated BCS superconducting gap = 0.0040067 eV
temp( 1) = 15.00000 K
Solve isotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw ( 1 ) = 62
iter = 1 error = 2.5322786302E+00 Znormi(1) = 1.8425565148E+00 Deltai(1) = 4.4511260663E-03
iter = 2 error = 7.6350592879E-02 Znormi(1) = 1.8420086250E+00 Deltai(1) = 4.6843298933E-03
iter = 3 error = 4.5214453227E-02 Znormi(1) = 1.8407880676E+00 Deltai(1) = 4.9302785068E-03
iter = 4 error = 3.4114375040E-02 Znormi(1) = 1.8396470531E+00 Deltai(1) = 5.1142664860E-03
iter = 5 error = 5.1084767499E-02 Znormi(1) = 1.8380345292E+00 Deltai(1) = 5.3737355707E-03
iter = 6 error = 3.1593313230E-02 Znormi(1) = 1.8369970920E+00 Deltai(1) = 5.5352742655E-03
iter = 7 error = 3.2735364530E-03 Znormi(1) = 1.8371188436E+00 Deltai(1) = 5.5172615930E-03
Convergence was reached in nsiter = 7
iaxis_imag : 0.00s CPU 0.00s WALL ( 1 calls)
Pade approximant of isotropic Eliashberg equations from imaginary-axis to real-axis
pade = 50 error = 1.3406540098E+00 Re[Znorm(1)] = 1.8386808671E+00 Re[Delta(1)] = 5.5339372998E-03
raxis_pade : 0.01s CPU 0.01s WALL ( 1 calls)
Analytic continuation of isotropic Eliashberg equations from imaginary-axis to real-axis
Total number of frequency points nsw = 2000
iter = 1 error = 1.0626740068E-01 Re[Znorm(1)] = 1.8388939127E+00 Re[Delta(1)] = 5.5362867549E-03
iter = 2 error = 1.6520911174E-02 Re[Znorm(1)] = 1.8388939165E+00 Re[Delta(1)] = 5.5362867458E-03
iter = 3 error = 9.7445084331E-03 Re[Znorm(1)] = 1.8388939179E+00 Re[Delta(1)] = 5.5362867426E-03
Convergence was reached in nsiter = 3
raxis_acon : 1.34s CPU 1.34s WALL ( 1 calls)
itemp = 1 total cpu time : 1.4 secs
Unfolding on the coarse grid
elphon_wrap : 46.20s CPU 46.89s WALL ( 1 calls)
INITIALIZATION:
set_drhoc : 0.38s CPU 0.38s WALL ( 28 calls)
init_vloc : 0.00s CPU 0.00s WALL ( 1 calls)
init_us_1 : 0.00s CPU 0.00s WALL ( 1 calls)
Electron-Phonon interpolation
ephwann : 0.71s CPU 0.73s WALL ( 1 calls)
ep-interp : 0.56s CPU 0.57s WALL ( 216 calls)
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 2 : 0.00s CPU 0.00s WALL ( 1 calls)
ep: step 1 : 0.00s CPU 0.00s WALL ( 243 calls)
ep: step 2 : 0.04s CPU 0.04s WALL ( 243 calls)
DynW2B : 0.01s CPU 0.01s WALL ( 216 calls)
HamW2B : 0.09s CPU 0.09s WALL ( 12152 calls)
ephW2Bp : 0.08s CPU 0.09s WALL ( 216 calls)
ELIASHBERG : 66.16s CPU 66.17s WALL ( 1 calls)
Total program execution
EPW : 1m57.80s CPU 1m58.56s WALL
Please consider citing:
S. Ponce, E. R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
In addition, if you used anisotropic Eliashberg superconductivity please cite:
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
if you used transport properties (scattering rates, mobility) please cite:
S. Ponce, E. R. Margine and F. Giustino, Phys. Rev. B 97, 121201 (2018)