quantum-espresso/flib/lapack_t3e.f

2245 lines
68 KiB
Fortran

SUBROUTINE SGEMUL(A,LDA,FORMA,B,LDB,FORMB,C,LDC,L,M,N)
IMPLICIT NONE
CHARACTER*1 FORMA,FORMB
REAL*8 A,B,C
real*8, allocatable :: auxa(:,:)
real*8, allocatable :: auxb(:,:)
real*8, allocatable :: auxc(:,:)
integer i,j
INTEGER LDA,LDB,LDC,L,M,N
DIMENSION A(LDA,*),B(LDB,*),C(LDC,*)
INTEGER MM,NN,KK
MM = L
NN = N
KK = M
if(forma.eq.'t' .or. forma.eq.'T') then
if(formb.eq.'t' .or. formb.eq.'T') then
allocate(auxc(MM,NN))
CALL SGEMM('N','N',MM,NN,KK,1.0D0,B,LDB,A,LDA,0.0D0,AUXC,MM)
call fpmd_transpose(AUXC,MM,C,LDC,NN,MM)
deallocate(auxc)
else
allocate(auxa(MM,KK))
call fpmd_transpose(A,LDA,AUXA,MM,MM,KK)
CALL SGEMM('N','N',MM,NN,KK,1.0D0,auxa,MM,B,LDB,0.0D0,C,LDC)
deallocate(auxa)
end if
else if (formb.eq.'t' .or. formb.eq.'T') then
allocate(auxb(KK,NN))
call fpmd_transpose(B,LDB,AUXB,KK,KK,NN)
CALL SGEMM('N','N',MM,NN,KK,1.0D0,A,LDA,auxb,KK,0.0D0,C,LDC)
deallocate(auxb)
else
CALL SGEMM(forma,formb,MM,NN,KK,1.0D0,A,LDA,B,LDB,0.0D0,C,LDC)
end if
RETURN
END
SUBROUTINE SLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER TYPE
INTEGER INFO, KL, KU, LDA, M, N
REAL*8 CFROM, CTO
* ..
* .. Array Arguments ..
REAL*8 A( LDA, * )
* ..
*
* Purpose
* =======
*
* SLASCL multiplies the M by N real matrix A by the real scalar
* CTO/CFROM. This is done without over/underflow as long as the final
* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
* A may be full, upper triangular, lower triangular, upper Hessenberg,
* or banded.
*
* Arguments
* =========
*
* TYPE (input) CHARACTER*1
* TYPE indices the storage type of the input matrix.
* = 'G': A is a full matrix.
* = 'L': A is a lower triangular matrix.
* = 'U': A is an upper triangular matrix.
* = 'H': A is an upper Hessenberg matrix.
* = 'B': A is a symmetric band matrix with lower bandwidth KL
* and upper bandwidth KU and with the only the lower
* half stored.
* = 'Q': A is a symmetric band matrix with lower bandwidth KL
* and upper bandwidth KU and with the only the upper
* half stored.
* = 'Z': A is a band matrix with lower bandwidth KL and upper
* bandwidth KU.
*
* KL (input) INTEGER
* The lower bandwidth of A. Referenced only if TYPE = 'B',
* 'Q' or 'Z'.
*
* KU (input) INTEGER
* The upper bandwidth of A. Referenced only if TYPE = 'B',
* 'Q' or 'Z'.
*
* CFROM (input) REAL
* CTO (input) REAL
* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
* without over/underflow if the final result CTO*A(I,J)/CFROM
* can be represented without over/underflow. CFROM must be
* nonzero.
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input/output) REAL array, dimension (LDA,M)
* The matrix to be multiplied by CTO/CFROM. See TYPE for the
* storage type.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* INFO (output) INTEGER
* 0 - successful exit
* <0 - if INFO = -i, the i-th argument had an illegal value.
*
* =====================================================================
*
* .. Parameters ..
REAL*8 ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL DONE
INTEGER I, ITYPE, J, K1, K2, K3, K4
REAL*8 BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL*8 SLAMCH
EXTERNAL LSAME, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
*
IF( LSAME( TYPE, 'G' ) ) THEN
ITYPE = 0
ELSE IF( LSAME( TYPE, 'L' ) ) THEN
ITYPE = 1
ELSE IF( LSAME( TYPE, 'U' ) ) THEN
ITYPE = 2
ELSE IF( LSAME( TYPE, 'H' ) ) THEN
ITYPE = 3
ELSE IF( LSAME( TYPE, 'B' ) ) THEN
ITYPE = 4
ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
ITYPE = 5
ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
ITYPE = 6
ELSE
ITYPE = -1
END IF
*
IF( ITYPE.EQ.-1 ) THEN
INFO = -1
ELSE IF( CFROM.EQ.ZERO ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
$ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
INFO = -7
ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
INFO = -9
ELSE IF( ITYPE.GE.4 ) THEN
IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
INFO = -2
ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
$ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
$ THEN
INFO = -3
ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
$ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
$ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
INFO = -9
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLASCL', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
* Get machine parameters
*
SMLNUM = SLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
*
CFROMC = CFROM
CTOC = CTO
*
10 CONTINUE
CFROM1 = CFROMC*SMLNUM
CTO1 = CTOC / BIGNUM
IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
MUL = SMLNUM
DONE = .FALSE.
CFROMC = CFROM1
ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
MUL = BIGNUM
DONE = .FALSE.
CTOC = CTO1
ELSE
MUL = CTOC / CFROMC
DONE = .TRUE.
END IF
*
IF( ITYPE.EQ.0 ) THEN
*
* Full matrix
*
DO 30 J = 1, N
DO 20 I = 1, M
A( I, J ) = A( I, J )*MUL
20 CONTINUE
30 CONTINUE
*
ELSE IF( ITYPE.EQ.1 ) THEN
*
* Lower triangular matrix
*
DO 50 J = 1, N
DO 40 I = J, M
A( I, J ) = A( I, J )*MUL
40 CONTINUE
50 CONTINUE
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Upper triangular matrix
*
DO 70 J = 1, N
DO 60 I = 1, MIN( J, M )
A( I, J ) = A( I, J )*MUL
60 CONTINUE
70 CONTINUE
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* Upper Hessenberg matrix
*
DO 90 J = 1, N
DO 80 I = 1, MIN( J+1, M )
A( I, J ) = A( I, J )*MUL
80 CONTINUE
90 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Lower half of a symmetric band matrix
*
K3 = KL + 1
K4 = N + 1
DO 110 J = 1, N
DO 100 I = 1, MIN( K3, K4-J )
A( I, J ) = A( I, J )*MUL
100 CONTINUE
110 CONTINUE
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Upper half of a symmetric band matrix
*
K1 = KU + 2
K3 = KU + 1
DO 130 J = 1, N
DO 120 I = MAX( K1-J, 1 ), K3
A( I, J ) = A( I, J )*MUL
120 CONTINUE
130 CONTINUE
*
ELSE IF( ITYPE.EQ.6 ) THEN
*
* Band matrix
*
K1 = KL + KU + 2
K2 = KL + 1
K3 = 2*KL + KU + 1
K4 = KL + KU + 1 + M
DO 150 J = 1, N
DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
A( I, J ) = A( I, J )*MUL
140 CONTINUE
150 CONTINUE
*
END IF
*
IF( .NOT.DONE )
$ GO TO 10
*
RETURN
*
* End of SLASCL
*
END
SUBROUTINE SLAE2( A, B, C, RT1, RT2 )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
REAL*8 A, B, C, RT1, RT2
* ..
*
* Purpose
* =======
*
* SLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
* [ A B ]
* [ B C ].
* On return, RT1 is the eigenvalue of larger absolute value, and RT2
* is the eigenvalue of smaller absolute value.
*
* Arguments
* =========
*
* A (input) REAL
* The (1,1) element of the 2-by-2 matrix.
*
* B (input) REAL
* The (1,2) and (2,1) elements of the 2-by-2 matrix.
*
* C (input) REAL
* The (2,2) element of the 2-by-2 matrix.
*
* RT1 (output) REAL
* The eigenvalue of larger absolute value.
*
* RT2 (output) REAL
* The eigenvalue of smaller absolute value.
*
* Further Details
* ===============
*
* RT1 is accurate to a few ulps barring over/underflow.
*
* RT2 may be inaccurate if there is massive cancellation in the
* determinant A*C-B*B; higher precision or correctly rounded or
* correctly truncated arithmetic would be needed to compute RT2
* accurately in all cases.
*
* Overflow is possible only if RT1 is within a factor of 5 of overflow.
* Underflow is harmless if the input data is 0 or exceeds
* underflow_threshold / macheps.
*
* =====================================================================
*
* .. Parameters ..
REAL*8 ONE
PARAMETER ( ONE = 1.0E0 )
REAL*8 TWO
PARAMETER ( TWO = 2.0E0 )
REAL*8 ZERO
PARAMETER ( ZERO = 0.0E0 )
REAL*8 HALF
PARAMETER ( HALF = 0.5E0 )
* ..
* .. Local Scalars ..
REAL*8 AB, ACMN, ACMX, ADF, DF, RT, SM, TB
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
* Compute the eigenvalues
*
SM = A + C
DF = A - C
ADF = ABS( DF )
TB = B + B
AB = ABS( TB )
IF( ABS( A ).GT.ABS( C ) ) THEN
ACMX = A
ACMN = C
ELSE
ACMX = C
ACMN = A
END IF
IF( ADF.GT.AB ) THEN
RT = ADF*SQRT( ONE+( AB / ADF )**2 )
ELSE IF( ADF.LT.AB ) THEN
RT = AB*SQRT( ONE+( ADF / AB )**2 )
ELSE
*
* Includes case AB=ADF=0
*
RT = AB*SQRT( TWO )
END IF
IF( SM.LT.ZERO ) THEN
RT1 = HALF*( SM-RT )
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE IF( SM.GT.ZERO ) THEN
RT1 = HALF*( SM+RT )
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE
*
* Includes case RT1 = RT2 = 0
*
RT1 = HALF*RT
RT2 = -HALF*RT
END IF
RETURN
*
* End of SLAE2
*
END
SUBROUTINE SLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
REAL*8 A, B, C, CS1, RT1, RT2, SN1
* ..
*
* Purpose
* =======
*
* SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
* [ A B ]
* [ B C ].
* On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
* eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
* eigenvector for RT1, giving the decomposition
*
* [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
* [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
*
* Arguments
* =========
*
* A (input) REAL
* The (1,1) element of the 2-by-2 matrix.
*
* B (input) REAL
* The (1,2) element and the conjugate of the (2,1) element of
* the 2-by-2 matrix.
*
* C (input) REAL
* The (2,2) element of the 2-by-2 matrix.
*
* RT1 (output) REAL
* The eigenvalue of larger absolute value.
*
* RT2 (output) REAL
* The eigenvalue of smaller absolute value.
*
* CS1 (output) REAL
* SN1 (output) REAL
* The vector (CS1, SN1) is a unit right eigenvector for RT1.
*
* Further Details
* ===============
*
* RT1 is accurate to a few ulps barring over/underflow.
*
* RT2 may be inaccurate if there is massive cancellation in the
* determinant A*C-B*B; higher precision or correctly rounded or
* correctly truncated arithmetic would be needed to compute RT2
* accurately in all cases.
*
* CS1 and SN1 are accurate to a few ulps barring over/underflow.
*
* Overflow is possible only if RT1 is within a factor of 5 of overflow.
* Underflow is harmless if the input data is 0 or exceeds
* underflow_threshold / macheps.
*
* =====================================================================
*
* .. Parameters ..
REAL*8 ONE
PARAMETER ( ONE = 1.0E0 )
REAL*8 TWO
PARAMETER ( TWO = 2.0E0 )
REAL*8 ZERO
PARAMETER ( ZERO = 0.0E0 )
REAL*8 HALF
PARAMETER ( HALF = 0.5E0 )
* ..
* .. Local Scalars ..
INTEGER SGN1, SGN2
REAL*8 AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
$ TB, TN
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
* Compute the eigenvalues
*
SM = A + C
DF = A - C
ADF = ABS( DF )
TB = B + B
AB = ABS( TB )
IF( ABS( A ).GT.ABS( C ) ) THEN
ACMX = A
ACMN = C
ELSE
ACMX = C
ACMN = A
END IF
IF( ADF.GT.AB ) THEN
RT = ADF*SQRT( ONE+( AB / ADF )**2 )
ELSE IF( ADF.LT.AB ) THEN
RT = AB*SQRT( ONE+( ADF / AB )**2 )
ELSE
*
* Includes case AB=ADF=0
*
RT = AB*SQRT( TWO )
END IF
IF( SM.LT.ZERO ) THEN
RT1 = HALF*( SM-RT )
SGN1 = -1
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE IF( SM.GT.ZERO ) THEN
RT1 = HALF*( SM+RT )
SGN1 = 1
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE
*
* Includes case RT1 = RT2 = 0
*
RT1 = HALF*RT
RT2 = -HALF*RT
SGN1 = 1
END IF
*
* Compute the eigenvector
*
IF( DF.GE.ZERO ) THEN
CS = DF + RT
SGN2 = 1
ELSE
CS = DF - RT
SGN2 = -1
END IF
ACS = ABS( CS )
IF( ACS.GT.AB ) THEN
CT = -TB / CS
SN1 = ONE / SQRT( ONE+CT*CT )
CS1 = CT*SN1
ELSE
IF( AB.EQ.ZERO ) THEN
CS1 = ONE
SN1 = ZERO
ELSE
TN = -CS / TB
CS1 = ONE / SQRT( ONE+TN*TN )
SN1 = TN*CS1
END IF
END IF
IF( SGN1.EQ.SGN2 ) THEN
TN = CS1
CS1 = -SN1
SN1 = TN
END IF
RETURN
*
* End of SLAEV2
*
END
REAL*8 FUNCTION SLANST( NORM, N, D, E )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER N
* ..
* .. Array Arguments ..
REAL*8 D( * ), E( * )
* ..
*
* Purpose
* =======
*
* SLANST returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of a
* real symmetric tridiagonal matrix A.
*
* Description
* ===========
*
* SLANST returns the value
*
* SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in SLANST as described
* above.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, SLANST is
* set to zero.
*
* D (input) REAL array, dimension (N)
* The diagonal elements of A.
*
* E (input) REAL array, dimension (N-1)
* The (n-1) sub-diagonal or super-diagonal elements of A.
*
* =====================================================================
*
* .. Parameters ..
REAL*8 ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL*8 ANORM, SCALE, SUM
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
IF( N.LE.0 ) THEN
ANORM = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
ANORM = ABS( D( N ) )
DO 10 I = 1, N - 1
ANORM = MAX( ANORM, ABS( D( I ) ) )
ANORM = MAX( ANORM, ABS( E( I ) ) )
10 CONTINUE
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
$ LSAME( NORM, 'I' ) ) THEN
*
* Find norm1(A).
*
IF( N.EQ.1 ) THEN
ANORM = ABS( D( 1 ) )
ELSE
ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
$ ABS( E( N-1 ) )+ABS( D( N ) ) )
DO 20 I = 2, N - 1
ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
$ ABS( E( I-1 ) ) )
20 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
IF( N.GT.1 ) THEN
CALL SLASSQ( N-1, E, 1, SCALE, SUM )
SUM = 2*SUM
END IF
CALL SLASSQ( N, D, 1, SCALE, SUM )
ANORM = SCALE*SQRT( SUM )
END IF
*
SLANST = ANORM
RETURN
*
* End of SLANST
*
END
SUBROUTINE CGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
$ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
$ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* CGGEV computes for a pair of N-by-N complex nonsymmetric matrices
* (A,B), the generalized eigenvalues, and optionally, the left and/or
* right generalized eigenvectors.
*
* A generalized eigenvalue for a pair of matrices (A,B) is a scalar
* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
* singular. It is usually represented as the pair (alpha,beta), as
* there is a reasonable interpretation for beta=0, and even for both
* being zero.
*
* The right generalized eigenvector v(j) corresponding to the
* generalized eigenvalue lambda(j) of (A,B) satisfies
*
* A * v(j) = lambda(j) * B * v(j).
*
* The left generalized eigenvector u(j) corresponding to the
* generalized eigenvalues lambda(j) of (A,B) satisfies
*
* u(j)**H * A = lambda(j) * u(j)**H * B
*
* where u(j)**H is the conjugate-transpose of u(j).
*
* Arguments
* =========
*
* JOBVL (input) CHARACTER*1
* = 'N': do not compute the left generalized eigenvectors;
* = 'V': compute the left generalized eigenvectors.
*
* JOBVR (input) CHARACTER*1
* = 'N': do not compute the right generalized eigenvectors;
* = 'V': compute the right generalized eigenvectors.
*
* N (input) INTEGER
* The order of the matrices A, B, VL, and VR. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA, N)
* On entry, the matrix A in the pair (A,B).
* On exit, A has been overwritten.
*
* LDA (input) INTEGER
* The leading dimension of A. LDA >= max(1,N).
*
* B (input/output) COMPLEX array, dimension (LDB, N)
* On entry, the matrix B in the pair (A,B).
* On exit, B has been overwritten.
*
* LDB (input) INTEGER
* The leading dimension of B. LDB >= max(1,N).
*
* ALPHA (output) COMPLEX array, dimension (N)
* BETA (output) COMPLEX array, dimension (N)
* On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
* generalized eigenvalues.
*
* Note: the quotients ALPHA(j)/BETA(j) may easily over- or
* underflow, and BETA(j) may even be zero. Thus, the user
* should avoid naively computing the ratio alpha/beta.
* However, ALPHA will be always less than and usually
* comparable with norm(A) in magnitude, and BETA always less
* than and usually comparable with norm(B).
*
* VL (output) COMPLEX array, dimension (LDVL,N)
* If JOBVL = 'V', the left generalized eigenvectors u(j) are
* stored one after another in the columns of VL, in the same
* order as their eigenvalues.
* Each eigenvector will be scaled so the largest component
* will have abs(real part) + abs(imag. part) = 1.
* Not referenced if JOBVL = 'N'.
*
* LDVL (input) INTEGER
* The leading dimension of the matrix VL. LDVL >= 1, and
* if JOBVL = 'V', LDVL >= N.
*
* VR (output) COMPLEX array, dimension (LDVR,N)
* If JOBVR = 'V', the right generalized eigenvectors v(j) are
* stored one after another in the columns of VR, in the same
* order as their eigenvalues.
* Each eigenvector will be scaled so the largest component
* will have abs(real part) + abs(imag. part) = 1.
* Not referenced if JOBVR = 'N'.
*
* LDVR (input) INTEGER
* The leading dimension of the matrix VR. LDVR >= 1, and
* if JOBVR = 'V', LDVR >= N.
*
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,2*N).
* For good performance, LWORK must generally be larger.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* RWORK (workspace/output) REAL array, dimension (8*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
* =1,...,N:
* The QZ iteration failed. No eigenvectors have been
* calculated, but ALPHA(j) and BETA(j) should be
* correct for j=INFO+1,...,N.
* > N: =N+1: other then QZ iteration failed in SHGEQZ,
* =N+2: error return from STGEVC.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
$ CONE = ( 1.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
CHARACTER CHTEMP
INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
$ IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR,
$ LWKMIN, LWKOPT
REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
$ SMLNUM, TEMP
COMPLEX X
* ..
* .. Local Arrays ..
LOGICAL LDUMMA( 1 )
* ..
* .. External Subroutines ..
EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY,
$ CLASCL, CLASET, CTGEVC, CUNGQR, CUNMQR, SLABAD,
$ XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
REAL CLANGE, SLAMCH
EXTERNAL LSAME, ILAENV, CLANGE, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, MAX, REAL, SQRT
* ..
* .. Statement Functions ..
REAL ABS1
* ..
* .. Statement Function definitions ..
ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
* ..
* .. Executable Statements ..
*
* Decode the input arguments
*
IF( LSAME( JOBVL, 'N' ) ) THEN
IJOBVL = 1
ILVL = .FALSE.
ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
IJOBVL = 2
ILVL = .TRUE.
ELSE
IJOBVL = -1
ILVL = .FALSE.
END IF
*
IF( LSAME( JOBVR, 'N' ) ) THEN
IJOBVR = 1
ILVR = .FALSE.
ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
IJOBVR = 2
ILVR = .TRUE.
ELSE
IJOBVR = -1
ILVR = .FALSE.
END IF
ILV = ILVL .OR. ILVR
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
INFO = -11
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
INFO = -13
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* NB refers to the optimal block size for the immediately
* following subroutine, as returned by ILAENV. The workspace is
* computed assuming ILO = 1 and IHI = N, the worst case.)
*
LWKMIN = 1
IF( INFO.EQ.0 .AND. ( LWORK.GE.1 .OR. LQUERY ) ) THEN
LWKOPT = N + N*ILAENV( 1, 'CGEQRF', ' ', N, 1, N, 0 )
LWKMIN = MAX( 1, 2*N )
WORK( 1 ) = LWKOPT
END IF
*
IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
$ INFO = -15
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGGEV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
WORK( 1 ) = LWKOPT
IF( N.EQ.0 )
$ RETURN
*
* Get machine constants
*
EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
SMLNUM = SLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
SMLNUM = SQRT( SMLNUM ) / EPS
BIGNUM = ONE / SMLNUM
*
* Scale A if max element outside range [SMLNUM,BIGNUM]
*
ANRM = CLANGE( 'M', N, N, A, LDA, RWORK )
ILASCL = .FALSE.
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
ANRMTO = SMLNUM
ILASCL = .TRUE.
ELSE IF( ANRM.GT.BIGNUM ) THEN
ANRMTO = BIGNUM
ILASCL = .TRUE.
END IF
IF( ILASCL )
$ CALL CLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
*
* Scale B if max element outside range [SMLNUM,BIGNUM]
*
BNRM = CLANGE( 'M', N, N, B, LDB, RWORK )
ILBSCL = .FALSE.
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
BNRMTO = SMLNUM
ILBSCL = .TRUE.
ELSE IF( BNRM.GT.BIGNUM ) THEN
BNRMTO = BIGNUM
ILBSCL = .TRUE.
END IF
IF( ILBSCL )
$ CALL CLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
*
* Permute the matrices A, B to isolate eigenvalues if possible
* (Real Workspace: need 6*N)
*
ILEFT = 1
IRIGHT = N + 1
IRWRK = IRIGHT + N
CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
*
* Reduce B to triangular form (QR decomposition of B)
* (Complex Workspace: need N, prefer N*NB)
*
IROWS = IHI + 1 - ILO
IF( ILV ) THEN
ICOLS = N + 1 - ILO
ELSE
ICOLS = IROWS
END IF
ITAU = 1
IWRK = ITAU + IROWS
CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
*
* Apply the orthogonal transformation to matrix A
* (Complex Workspace: need N, prefer N*NB)
*
CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
$ LWORK+1-IWRK, IERR )
*
* Initialize VL
* (Complex Workspace: need N, prefer N*NB)
*
IF( ILVL ) THEN
CALL CLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
$ VL( ILO+1, ILO ), LDVL )
CALL CUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
$ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
END IF
*
* Initialize VR
*
IF( ILVR )
$ CALL CLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
*
* Reduce to generalized Hessenberg form
*
IF( ILV ) THEN
*
* Eigenvectors requested -- work on whole matrix.
*
CALL CGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
$ LDVL, VR, LDVR, IERR )
ELSE
CALL CGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
$ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
END IF
*
* Perform QZ algorithm (Compute eigenvalues, and optionally, the
* Schur form and Schur vectors)
* (Complex Workspace: need N)
* (Real Workspace: need N)
*
IWRK = ITAU
IF( ILV ) THEN
CHTEMP = 'S'
ELSE
CHTEMP = 'E'
END IF
CALL CHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
$ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
$ LWORK+1-IWRK, RWORK( IRWRK ), IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
INFO = IERR
ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
INFO = IERR - N
ELSE
INFO = N + 1
END IF
GO TO 70
END IF
*
* Compute Eigenvectors
* (Real Workspace: need 2*N)
* (Complex Workspace: need 2*N)
*
IF( ILV ) THEN
IF( ILVL ) THEN
IF( ILVR ) THEN
CHTEMP = 'B'
ELSE
CHTEMP = 'L'
END IF
ELSE
CHTEMP = 'R'
END IF
*
CALL CTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
$ VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ),
$ IERR )
IF( IERR.NE.0 ) THEN
INFO = N + 2
GO TO 70
END IF
*
* Undo balancing on VL and VR and normalization
* (Workspace: none needed)
*
IF( ILVL ) THEN
CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), N, VL, LDVL, IERR )
DO 30 JC = 1, N
TEMP = ZERO
DO 10 JR = 1, N
TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
10 CONTINUE
IF( TEMP.LT.SMLNUM )
$ GO TO 30
TEMP = ONE / TEMP
DO 20 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
20 CONTINUE
30 CONTINUE
END IF
IF( ILVR ) THEN
CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
$ RWORK( IRIGHT ), N, VR, LDVR, IERR )
DO 60 JC = 1, N
TEMP = ZERO
DO 40 JR = 1, N
TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
40 CONTINUE
IF( TEMP.LT.SMLNUM )
$ GO TO 60
TEMP = ONE / TEMP
DO 50 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
50 CONTINUE
60 CONTINUE
END IF
END IF
*
* Undo scaling if necessary
*
IF( ILASCL )
$ CALL CLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
*
IF( ILBSCL )
$ CALL CLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
*
70 CONTINUE
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of CGGEV
*
END
REAL FUNCTION CLANGE( NORM, M, N, A, LDA, WORK )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* October 31, 1992
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER LDA, M, N
* ..
* .. Array Arguments ..
REAL WORK( * )
COMPLEX A( LDA, * )
* ..
*
* Purpose
* =======
*
* CLANGE returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of a
* complex matrix A.
*
* Description
* ===========
*
* CLANGE returns the value
*
* CLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in CLANGE as described
* above.
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0. When M = 0,
* CLANGE is set to zero.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0. When N = 0,
* CLANGE is set to zero.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The m by n matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(M,1).
*
* WORK (workspace) REAL array, dimension (LWORK),
* where LWORK >= M when NORM = 'I'; otherwise, WORK is not
* referenced.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL SCALE, SUM, VALUE
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
IF( MIN( M, N ).EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
DO 20 J = 1, N
DO 10 I = 1, M
VALUE = MAX( VALUE, ABS( A( I, J ) ) )
10 CONTINUE
20 CONTINUE
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
* Find norm1(A).
*
VALUE = ZERO
DO 40 J = 1, N
SUM = ZERO
DO 30 I = 1, M
SUM = SUM + ABS( A( I, J ) )
30 CONTINUE
VALUE = MAX( VALUE, SUM )
40 CONTINUE
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
DO 50 I = 1, M
WORK( I ) = ZERO
50 CONTINUE
DO 70 J = 1, N
DO 60 I = 1, M
WORK( I ) = WORK( I ) + ABS( A( I, J ) )
60 CONTINUE
70 CONTINUE
VALUE = ZERO
DO 80 I = 1, M
VALUE = MAX( VALUE, WORK( I ) )
80 CONTINUE
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
DO 90 J = 1, N
CALL CLASSQ( M, A( 1, J ), 1, SCALE, SUM )
90 CONTINUE
VALUE = SCALE*SQRT( SUM )
END IF
*
CLANGE = VALUE
RETURN
*
* End of CLANGE
*
END
SUBROUTINE CLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER TYPE
INTEGER INFO, KL, KU, LDA, M, N
REAL CFROM, CTO
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * )
* ..
*
* Purpose
* =======
*
* CLASCL multiplies the M by N complex matrix A by the real scalar
* CTO/CFROM. This is done without over/underflow as long as the final
* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
* A may be full, upper triangular, lower triangular, upper Hessenberg,
* or banded.
*
* Arguments
* =========
*
* TYPE (input) CHARACTER*1
* TYPE indices the storage type of the input matrix.
* = 'G': A is a full matrix.
* = 'L': A is a lower triangular matrix.
* = 'U': A is an upper triangular matrix.
* = 'H': A is an upper Hessenberg matrix.
* = 'B': A is a symmetric band matrix with lower bandwidth KL
* and upper bandwidth KU and with the only the lower
* half stored.
* = 'Q': A is a symmetric band matrix with lower bandwidth KL
* and upper bandwidth KU and with the only the upper
* half stored.
* = 'Z': A is a band matrix with lower bandwidth KL and upper
* bandwidth KU.
*
* KL (input) INTEGER
* The lower bandwidth of A. Referenced only if TYPE = 'B',
* 'Q' or 'Z'.
*
* KU (input) INTEGER
* The upper bandwidth of A. Referenced only if TYPE = 'B',
* 'Q' or 'Z'.
*
* CFROM (input) REAL
* CTO (input) REAL
* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
* without over/underflow if the final result CTO*A(I,J)/CFROM
* can be represented without over/underflow. CFROM must be
* nonzero.
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA,M)
* The matrix to be multiplied by CTO/CFROM. See TYPE for the
* storage type.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* INFO (output) INTEGER
* 0 - successful exit
* <0 - if INFO = -i, the i-th argument had an illegal value.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL DONE
INTEGER I, ITYPE, J, K1, K2, K3, K4
REAL BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH
EXTERNAL LSAME, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
*
IF( LSAME( TYPE, 'G' ) ) THEN
ITYPE = 0
ELSE IF( LSAME( TYPE, 'L' ) ) THEN
ITYPE = 1
ELSE IF( LSAME( TYPE, 'U' ) ) THEN
ITYPE = 2
ELSE IF( LSAME( TYPE, 'H' ) ) THEN
ITYPE = 3
ELSE IF( LSAME( TYPE, 'B' ) ) THEN
ITYPE = 4
ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
ITYPE = 5
ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
ITYPE = 6
ELSE
ITYPE = -1
END IF
*
IF( ITYPE.EQ.-1 ) THEN
INFO = -1
ELSE IF( CFROM.EQ.ZERO ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -6
ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
$ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
INFO = -7
ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
INFO = -9
ELSE IF( ITYPE.GE.4 ) THEN
IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
INFO = -2
ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
$ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
$ THEN
INFO = -3
ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
$ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
$ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
INFO = -9
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLASCL', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
* Get machine parameters
*
SMLNUM = SLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
*
CFROMC = CFROM
CTOC = CTO
*
10 CONTINUE
CFROM1 = CFROMC*SMLNUM
CTO1 = CTOC / BIGNUM
IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
MUL = SMLNUM
DONE = .FALSE.
CFROMC = CFROM1
ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
MUL = BIGNUM
DONE = .FALSE.
CTOC = CTO1
ELSE
MUL = CTOC / CFROMC
DONE = .TRUE.
END IF
*
IF( ITYPE.EQ.0 ) THEN
*
* Full matrix
*
DO 30 J = 1, N
DO 20 I = 1, M
A( I, J ) = A( I, J )*MUL
20 CONTINUE
30 CONTINUE
*
ELSE IF( ITYPE.EQ.1 ) THEN
*
* Lower triangular matrix
*
DO 50 J = 1, N
DO 40 I = J, M
A( I, J ) = A( I, J )*MUL
40 CONTINUE
50 CONTINUE
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Upper triangular matrix
*
DO 70 J = 1, N
DO 60 I = 1, MIN( J, M )
A( I, J ) = A( I, J )*MUL
60 CONTINUE
70 CONTINUE
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* Upper Hessenberg matrix
*
DO 90 J = 1, N
DO 80 I = 1, MIN( J+1, M )
A( I, J ) = A( I, J )*MUL
80 CONTINUE
90 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Lower half of a symmetric band matrix
*
K3 = KL + 1
K4 = N + 1
DO 110 J = 1, N
DO 100 I = 1, MIN( K3, K4-J )
A( I, J ) = A( I, J )*MUL
100 CONTINUE
110 CONTINUE
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Upper half of a symmetric band matrix
*
K1 = KU + 2
K3 = KU + 1
DO 130 J = 1, N
DO 120 I = MAX( K1-J, 1 ), K3
A( I, J ) = A( I, J )*MUL
120 CONTINUE
130 CONTINUE
*
ELSE IF( ITYPE.EQ.6 ) THEN
*
* Band matrix
*
K1 = KL + KU + 2
K2 = KL + 1
K3 = 2*KL + KU + 1
K4 = KL + KU + 1 + M
DO 150 J = 1, N
DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
A( I, J ) = A( I, J )*MUL
140 CONTINUE
150 CONTINUE
*
END IF
*
IF( .NOT.DONE )
$ GO TO 10
*
RETURN
*
* End of CLASCL
*
END
SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
$ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
$ LWORK, IWORK, IFAIL, INFO )
*
* -- LAPACK driver routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER IFAIL( * ), IWORK( * )
REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
$ Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SSYGVX computes selected eigenvalues, and optionally, eigenvectors
* of a real generalized symmetric-definite eigenproblem, of the form
* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
* and B are assumed to be symmetric and B is also positive definite.
* Eigenvalues and eigenvectors can be selected by specifying either a
* range of values or a range of indices for the desired eigenvalues.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* Specifies the problem type to be solved:
* = 1: A*x = (lambda)*B*x
* = 2: A*B*x = (lambda)*x
* = 3: B*A*x = (lambda)*x
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A and B are stored;
* = 'L': Lower triangle of A and B are stored.
*
* N (input) INTEGER
* The order of the matrix pencil (A,B). N >= 0.
*
* A (input/output) REAL array, dimension (LDA, N)
* On entry, the symmetric matrix A. If UPLO = 'U', the
* leading N-by-N upper triangular part of A contains the
* upper triangular part of the matrix A. If UPLO = 'L',
* the leading N-by-N lower triangular part of A contains
* the lower triangular part of the matrix A.
*
* On exit, the lower triangle (if UPLO='L') or the upper
* triangle (if UPLO='U') of A, including the diagonal, is
* destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input/output) REAL array, dimension (LDA, N)
* On entry, the symmetric matrix B. If UPLO = 'U', the
* leading N-by-N upper triangular part of B contains the
* upper triangular part of the matrix B. If UPLO = 'L',
* the leading N-by-N lower triangular part of B contains
* the lower triangular part of the matrix B.
*
* On exit, if INFO <= N, the part of B containing the matrix is
* overwritten by the triangular factor U or L from the Cholesky
* factorization B = U**T*U or B = L*L**T.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* VL (input) REAL
* VU (input) REAL
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (input) REAL
* The absolute error tolerance for the eigenvalues.
* An approximate eigenvalue is accepted as converged
* when it is determined to lie in an interval [a,b]
* of width less than or equal to
*
* ABSTOL + EPS * max( |a|,|b| ) ,
*
* where EPS is the machine precision. If ABSTOL is less than
* or equal to zero, then EPS*|T| will be used in its place,
* where |T| is the 1-norm of the tridiagonal matrix obtained
* by reducing A to tridiagonal form.
*
* Eigenvalues will be computed most accurately when ABSTOL is
* set to twice the underflow threshold 2*DLAMCH('S'), not zero.
* If this routine returns with INFO>0, indicating that some
* eigenvectors did not converge, try setting ABSTOL to
* 2*SLAMCH('S').
*
* M (output) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (output) REAL array, dimension (N)
* On normal exit, the first M elements contain the selected
* eigenvalues in ascending order.
*
* Z (output) REAL array, dimension (LDZ, max(1,M))
* If JOBZ = 'N', then Z is not referenced.
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
* contain the orthonormal eigenvectors of the matrix A
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* The eigenvectors are normalized as follows:
* if ITYPE = 1 or 2, Z**T*B*Z = I;
* if ITYPE = 3, Z**T*inv(B)*Z = I.
*
* If an eigenvector fails to converge, then that column of Z
* contains the latest approximation to the eigenvector, and the
* index of the eigenvector is returned in IFAIL.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* WORK (workspace/output) REAL array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The length of the array WORK. LWORK >= max(1,8*N).
* For optimal efficiency, LWORK >= (NB+3)*N,
* where NB is the blocksize for SSYTRD returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* IWORK (workspace) INTEGER array, dimension (5*N)
*
* IFAIL (output) INTEGER array, dimension (N)
* If JOBZ = 'V', then if INFO = 0, the first M elements of
* IFAIL are zero. If INFO > 0, then IFAIL contains the
* indices of the eigenvectors that failed to converge.
* If JOBZ = 'N', then IFAIL is not referenced.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: SPOTRF or SSYEVX returned an error code:
* <= N: if INFO = i, SSYEVX failed to converge;
* i eigenvectors failed to converge. Their indices
* are stored in array IFAIL.
* > N: if INFO = N + i, for 1 <= i <= N, then the leading
* minor of order i of B is not positive definite.
* The factorization of B could not be completed and
* no eigenvalues or eigenvectors were computed.
*
* Further Details
* ===============
*
* Based on contributions by
* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
CHARACTER TRANS
INTEGER LOPT, LWKOPT, NB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL SPOTRF, SSYEVX, SSYGST, STRMM, STRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
UPPER = LSAME( UPLO, 'U' )
WANTZ = LSAME( JOBZ, 'V' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
LQUERY = ( LWORK.EQ.-1 )
*
INFO = 0
IF( ITYPE.LT.0 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -3
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( VALEIG .AND. N.GT.0 ) THEN
IF( VU.LE.VL ) INFO = -11
ELSE IF( INDEIG .AND. IL.LT.1 ) THEN
INFO = -12
ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) ) THEN
INFO = -13
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -18
ELSE IF( LWORK.LT.MAX( 1, 8*N ) .AND. .NOT.LQUERY ) THEN
INFO = -20
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
LWKOPT = ( NB+3 )*N
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSYGVX', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Form a Cholesky factorization of B.
*
CALL SPOTRF( UPLO, N, B, LDB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CALL SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
$ M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
LOPT = WORK( 1 )
*
IF( WANTZ ) THEN
*
* Backtransform eigenvectors to the original problem.
*
IF( INFO.GT.0 )
$ M = INFO - 1
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'T'
END IF
*
CALL STRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
$ LDB, Z, LDZ )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* For B*A*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U'*y
*
IF( UPPER ) THEN
TRANS = 'T'
ELSE
TRANS = 'N'
END IF
*
CALL STRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
$ LDB, Z, LDZ )
END IF
END IF
*
* Set WORK(1) to optimal workspace size.
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of SSYGVX
*
END
SUBROUTINE CHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
$ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
$ LWORK, RWORK, IWORK, IFAIL, INFO )
*
* -- LAPACK driver routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER IFAIL( * ), IWORK( * )
REAL RWORK( * ), W( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
$ Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* CHEGVX computes selected eigenvalues, and optionally, eigenvectors
* of a complex generalized Hermitian-definite eigenproblem, of the form
* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
* B are assumed to be Hermitian and B is also positive definite.
* Eigenvalues and eigenvectors can be selected by specifying either a
* range of values or a range of indices for the desired eigenvalues.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* Specifies the problem type to be solved:
* = 1: A*x = (lambda)*B*x
* = 2: A*B*x = (lambda)*x
* = 3: B*A*x = (lambda)*x
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
**
* UPLO (input) CHARACTER*1
* = 'U': Upper triangles of A and B are stored;
* = 'L': Lower triangles of A and B are stored.
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA, N)
* On entry, the Hermitian matrix A. If UPLO = 'U', the
* leading N-by-N upper triangular part of A contains the
* upper triangular part of the matrix A. If UPLO = 'L',
* the leading N-by-N lower triangular part of A contains
* the lower triangular part of the matrix A.
*
* On exit, the lower triangle (if UPLO='L') or the upper
* triangle (if UPLO='U') of A, including the diagonal, is
* destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input/output) COMPLEX array, dimension (LDB, N)
* On entry, the Hermitian matrix B. If UPLO = 'U', the
* leading N-by-N upper triangular part of B contains the
* upper triangular part of the matrix B. If UPLO = 'L',
* the leading N-by-N lower triangular part of B contains
* the lower triangular part of the matrix B.
*
* On exit, if INFO <= N, the part of B containing the matrix is
* overwritten by the triangular factor U or L from the Cholesky
* factorization B = U**H*U or B = L*L**H.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* VL (input) REAL
* VU (input) REAL
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (input) REAL
* The absolute error tolerance for the eigenvalues.
* An approximate eigenvalue is accepted as converged
* when it is determined to lie in an interval [a,b]
* of width less than or equal to
*
* ABSTOL + EPS * max( |a|,|b| ) ,
*
* where EPS is the machine precision. If ABSTOL is less than
* or equal to zero, then EPS*|T| will be used in its place,
* where |T| is the 1-norm of the tridiagonal matrix obtained
* by reducing A to tridiagonal form.
*
* Eigenvalues will be computed most accurately when ABSTOL is
* set to twice the underflow threshold 2*SLAMCH('S'), not zero.
* If this routine returns with INFO>0, indicating that some
* eigenvectors did not converge, try setting ABSTOL to
* 2*SLAMCH('S').
*
* M (output) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (output) REAL array, dimension (N)
* The first M elements contain the selected
* eigenvalues in ascending order.
*
* Z (output) COMPLEX array, dimension (LDZ, max(1,M))
* If JOBZ = 'N', then Z is not referenced.
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
* contain the orthonormal eigenvectors of the matrix A
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* The eigenvectors are normalized as follows:
* if ITYPE = 1 or 2, Z**T*B*Z = I;
* if ITYPE = 3, Z**T*inv(B)*Z = I.
*
* If an eigenvector fails to converge, then that column of Z
* contains the latest approximation to the eigenvector, and the
* index of the eigenvector is returned in IFAIL.
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The length of the array WORK. LWORK >= max(1,2*N-1).
* For optimal efficiency, LWORK >= (NB+1)*N,
* where NB is the blocksize for CHETRD returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* RWORK (workspace) REAL array, dimension (7*N)
*
* IWORK (workspace) INTEGER array, dimension (5*N)
*
* IFAIL (output) INTEGER array, dimension (N)
* If JOBZ = 'V', then if INFO = 0, the first M elements of
* IFAIL are zero. If INFO > 0, then IFAIL contains the
* indices of the eigenvectors that failed to converge.
* If JOBZ = 'N', then IFAIL is not referenced.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: CPOTRF or CHEEVX returned an error code:
* <= N: if INFO = i, CHEEVX failed to converge;
* i eigenvectors failed to converge. Their indices
* are stored in array IFAIL.
* > N: if INFO = N + i, for 1 <= i <= N, then the leading
* minor of order i of B is not positive definite.
* The factorization of B could not be completed and
* no eigenvalues or eigenvectors were computed.
*
* Further Details
* ===============
*
* Based on contributions by
* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
* =====================================================================
*
* .. Parameters ..
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
CHARACTER TRANS
INTEGER LOPT, LWKOPT, NB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL CHEEVX, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
LQUERY = ( LWORK.EQ.-1 )
*
INFO = 0
IF( ITYPE.LT.0 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -3
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( VALEIG .AND. N.GT.0 ) THEN
IF( VU.LE.VL ) INFO = -11
ELSE IF( INDEIG .AND. IL.LT.1 ) THEN
INFO = -12
ELSE IF( INDEIG .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) ) THEN
INFO = -13
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -18
ELSE IF( LWORK.LT.MAX( 1, 2*N-1 ) .AND. .NOT.LQUERY ) THEN
INFO = -20
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
LWKOPT = ( NB+1 )*N
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHEGVX', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Form a Cholesky factorization of B.
*
CALL CPOTRF( UPLO, N, B, LDB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CALL CHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
$ M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
$ INFO )
LOPT = WORK( 1 )
*
IF( WANTZ ) THEN
*
* Backtransform eigenvectors to the original problem.
*
IF( INFO.GT.0 )
$ M = INFO - 1
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'C'
END IF
*
CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
$ LDB, Z, LDZ )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* For B*A*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U'*y
*
IF( UPPER ) THEN
TRANS = 'C'
ELSE
TRANS = 'N'
END IF
*
CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
$ LDB, Z, LDZ )
END IF
END IF
*
* Set WORK(1) to optimal complex workspace size.
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of CHEGVX
*
END