quantum-espresso/PH/compute_nldyn.f90

354 lines
15 KiB
Fortran

!
! Copyright (C) 2001-2008 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine compute_nldyn (wdyn, wgg, becq, alpq)
!-----------------------------------------------------------------------
!
! This routine computes the term of the dynamical matrix due to
! the orthogonality constraint. Only the part which is due to
! the nonlocal terms is computed here
!
USE kinds, ONLY : DP
USE klist, ONLY : wk
USE lsda_mod, ONLY : lsda, current_spin, isk, nspin
USE ions_base, ONLY : nat, ityp, ntyp => nsp
USE noncollin_module, ONLY : noncolin, npol
USE uspp, ONLY : nkb, qq, qq_so
USE uspp_param,ONLY : nh, nhm
USE spin_orb, ONLY : lspinorb
USE wvfct, ONLY : nbnd, et
USE qpoint, ONLY : nksq, ikks, ikqs
USE modes, ONLY : u
USE phus, ONLY : becp1, alphap, int1, int2, &
int2_so, int1_nc
USE control_ph, ONLY : nbnd_occ, rec_code_read
USE mp_global, ONLY: intra_pool_comm
USE mp, ONLY: mp_sum
USE becmod, ONLY : bec_type
implicit none
type (bec_type) :: becq (nksq), & ! input: the becp with psi_{k+q}
alpq(3, nksq)
complex(DP) :: wdyn (3 * nat, 3 * nat)
! input: the alphap with psi_{k}
! output: the term of the dynamical matrix
real(DP) :: wgg (nbnd, nbnd, nksq)
! input: the weights
complex(DP) :: ps, aux1 (nbnd), aux2 (nbnd)
complex(DP), allocatable :: ps1 (:,:), ps2 (:,:,:), ps3 (:,:), ps4 (:,:,:)
complex(DP), allocatable :: ps1_nc(:,:,:), ps2_nc(:,:,:,:), &
ps3_nc (:,:,:), ps4_nc (:,:,:,:), &
deff_nc(:,:,:,:)
real(DP), allocatable :: deff(:,:,:)
! work space
complex(DP) :: dynwrk (3 * nat, 3 * nat), ps_nc(2)
! auxiliary dynamical matrix
integer :: ik, ikk, ikq, ibnd, jbnd, ijkb0, ijkb0b, ih, jh, ikb, &
jkb, ipol, jpol, startb, lastb, na, nb, nt, ntb, nu_i, nu_j, &
na_icart, na_jcart, mu, nu, is, js, ijs
! counters
IF (rec_code_read >=-20) return
IF (noncolin) THEN
allocate (ps1_nc ( nkb, npol, nbnd))
allocate (ps2_nc ( nkb, npol, nbnd , 3))
allocate (ps3_nc ( nkb, npol, nbnd))
allocate (ps4_nc ( nkb, npol, nbnd , 3))
allocate (deff_nc ( nhm, nhm, nat, nspin))
ELSE
allocate (ps1 ( nkb, nbnd))
allocate (ps2 ( nkb, nbnd , 3))
allocate (ps3 ( nkb, nbnd))
allocate (ps4 ( nkb, nbnd , 3))
allocate (deff ( nhm, nhm, nat ))
END IF
dynwrk (:,:) = (0.d0, 0.d0)
call divide (nbnd, startb, lastb)
do ik = 1, nksq
ikk = ikks(ik)
ikq = ikqs(ik)
if (lsda) current_spin = isk (ikk)
IF (noncolin) THEN
ps1_nc = (0.d0, 0.d0)
ps2_nc = (0.d0, 0.d0)
ps3_nc = (0.d0, 0.d0)
ps4_nc = (0.d0, 0.d0)
ELSE
ps1 = (0.d0, 0.d0)
ps2 = (0.d0, 0.d0)
ps3 = (0.d0, 0.d0)
ps4 = (0.d0, 0.d0)
END IF
!
! Here we prepare the two terms
!
do ibnd = 1, nbnd
IF (noncolin) THEN
CALL compute_deff_nc(deff_nc,et(ibnd,ikk))
ELSE
CALL compute_deff(deff,et(ibnd,ikk))
ENDIF
ijkb0 = 0
do nt = 1, ntyp
do na = 1, nat
if (ityp (na) == nt) then
do ih = 1, nh (nt)
ikb = ijkb0 + ih
do jh = 1, nh (nt)
jkb = ijkb0 + jh
IF (noncolin) THEN
ijs=0
DO is=1,npol
DO js=1,npol
ijs=ijs+1
ps1_nc (ikb, is, ibnd) = &
ps1_nc (ikb, is, ibnd) + &
deff_nc(ih,jh,na,ijs)* &
becp1(ik)%nc (jkb, js, ibnd)
END DO
END DO
IF (lspinorb) THEN
ijs=0
DO is=1,npol
DO js=1,npol
ijs=ijs+1
ps3_nc (ikb, is, ibnd) = &
ps3_nc (ikb, is, ibnd) - &
qq_so(ih,jh,ijs,nt)*becq(ik)%nc(jkb,js,ibnd)
END DO
END DO
ELSE
DO is=1,npol
ps3_nc(ikb,is,ibnd)=ps3_nc(ikb,is,ibnd) - &
qq (ih, jh, nt) * becq(ik)%nc (jkb, is, ibnd)
ENDDO
END IF
ELSE
ps1 (ikb, ibnd) = ps1 (ikb, ibnd) + &
deff(ih,jh,na) * &
becp1(ik)%k (jkb, ibnd)
ps3 (ikb, ibnd) = ps3 (ikb, ibnd) - &
qq (ih, jh, nt) * becq(ik)%k (jkb, ibnd)
END IF
do ipol = 1, 3
IF (noncolin) THEN
ijs=0
DO is=1,npol
DO js=1,npol
ijs=ijs+1
ps2_nc(ikb,is,ibnd,ipol) = &
ps2_nc(ikb,is,ibnd,ipol) + &
deff_nc(ih,jh,na,ijs) * &
alphap(ipol,ik)%nc(jkb, js, ibnd)+ &
int1_nc(ih, jh, ipol, na, ijs) * &
becp1(ik)%nc (jkb, js, ibnd)
END DO
END DO
IF (lspinorb) THEN
ijs=0
DO is=1,npol
DO js=1,npol
ijs=ijs+1
ps4_nc(ikb,is,ibnd,ipol) = &
ps4_nc(ikb,is,ibnd,ipol)- &
qq_so(ih,jh,ijs,nt) * &
alpq(ipol,ik)%nc(jkb,js,ibnd)
END DO
END DO
ELSE
DO is=1,npol
ps4_nc(ikb,is,ibnd,ipol) = &
ps4_nc(ikb,is,ibnd,ipol)- &
qq(ih,jh,nt)*alpq(ipol,ik)%nc(jkb,is,ibnd)
END DO
END IF
ELSE
ps2 (ikb, ibnd, ipol) = ps2 (ikb, ibnd, ipol) + &
deff (ih, jh, na) * &
alphap(ipol,ik)%k(jkb, ibnd) + &
int1 (ih, jh, ipol, na, current_spin) * &
becp1(ik)%k (jkb, ibnd)
ps4 (ikb, ibnd, ipol) = ps4 (ikb, ibnd, ipol) - &
qq (ih, jh, nt) * alpq(ipol,ik)%k (jkb,ibnd)
END IF
enddo ! ipol
enddo
enddo
ijkb0 = ijkb0 + nh (nt)
endif
enddo
enddo
END DO
!
! Here starts the loop on the atoms (rows)
!
ijkb0 = 0
do nt = 1, ntyp
do na = 1, nat
if (ityp (na) .eq.nt) then
do ipol = 1, 3
mu = 3 * (na - 1) + ipol
do ibnd = 1, nbnd_occ (ikk)
aux1 (:) = (0.d0, 0.d0)
do ih = 1, nh (nt)
ikb = ijkb0 + ih
do jbnd = startb, lastb
IF (noncolin) THEN
aux1 (jbnd) = aux1 (jbnd) + &
CONJG(alpq(ipol,ik)%nc(ikb,1,jbnd))*ps1_nc(ikb,1,ibnd)+&
CONJG(becq(ik)%nc(ikb,1,jbnd))*ps2_nc(ikb,1,ibnd,ipol)+&
CONJG(alpq(ipol,ik)%nc(ikb,2,jbnd))*ps1_nc(ikb,2,ibnd)+&
CONJG(becq(ik)%nc(ikb,2,jbnd))*ps2_nc(ikb,2,ibnd,ipol)
ELSE
aux1 (jbnd) = aux1 (jbnd) + &
CONJG(alpq(ipol,ik)%k(ikb,jbnd))*ps1(ikb,ibnd)+&
CONJG(becq(ik)%k(ikb,jbnd))*ps2(ikb,ibnd,ipol)
END IF
enddo
enddo
ijkb0b = 0
do ntb = 1, ntyp
do nb = 1, nat
if (ityp (nb) == ntb) then
do ih = 1, nh (ntb)
ikb = ijkb0b + ih
ps_nc =(0.d0,0.d0)
ps = (0.d0, 0.d0)
do jh = 1, nh (ntb)
jkb = ijkb0b + jh
IF (noncolin) THEN
IF (lspinorb) THEN
ijs=0
DO is=1,npol
DO js=1,npol
ijs=ijs+1
ps_nc(is) = ps_nc(is) + &
int2_so(ih,jh,ipol,na,nb,ijs)*&
becp1(ik)%nc(jkb,js,ibnd)
END DO
END DO
ELSE
DO is=1,npol
ps_nc(is) = ps_nc(is) + &
int2(ih,jh,ipol,na,nb)*&
becp1(ik)%nc(jkb,is,ibnd)
END DO
ENDIF
ELSE
ps = ps + int2 (ih, jh, ipol, na, nb) * &
becp1(ik)%k (jkb, ibnd)
END IF
enddo
do jbnd = startb, lastb
IF (noncolin) THEN
aux1(jbnd) = aux1 (jbnd) + &
ps_nc(1)*CONJG(becq(ik)%nc(ikb,1,jbnd))+&
ps_nc(2)*CONJG(becq(ik)%nc(ikb,2,jbnd))
ELSE
aux1(jbnd) = aux1 (jbnd) + &
ps * CONJG(becq(ik)%k(ikb,jbnd))
END IF
enddo
enddo
ijkb0b = ijkb0b + nh (ntb)
endif
enddo
enddo
!
! here starts the second loop on the atoms
!
ijkb0b = 0
do ntb = 1, ntyp
do nb = 1, nat
if (ityp (nb) == ntb) then
do jpol = 1, 3
nu = 3 * (nb - 1) + jpol
aux2 (:) = (0.d0, 0.d0)
do ih = 1, nh (ntb)
ikb = ijkb0b + ih
do jbnd = startb, lastb
IF (noncolin) THEN
aux2 (jbnd) = aux2 (jbnd) + &
wgg(ibnd, jbnd, ik) * &
(CONJG(alphap(jpol,ik)%nc(ikb,1,ibnd))*&
ps3_nc (ikb, 1, jbnd) + &
CONJG(becp1(ik)%nc (ikb,1,ibnd))* &
ps4_nc (ikb, 1, jbnd, jpol) + &
CONJG(alphap(jpol,ik)%nc(ikb,2,ibnd))*&
ps3_nc (ikb,2,jbnd) + &
CONJG(becp1(ik)%nc (ikb,2,ibnd)) * &
ps4_nc (ikb, 2, jbnd, jpol) )
ELSE
aux2 (jbnd) = aux2 (jbnd) + &
wgg (ibnd, jbnd, ik) * &
(CONJG(alphap(jpol,ik)%k(ikb,ibnd))*&
ps3 (ikb, jbnd) + &
CONJG(becp1(ik)%k (ikb, ibnd) ) * &
ps4 (ikb, jbnd, jpol) )
END IF
enddo
enddo
do jbnd = startb, lastb
dynwrk (nu, mu) = dynwrk (nu, mu) + &
2.d0*wk(ikk) * aux2(jbnd) * aux1(jbnd)
enddo
enddo
ijkb0b = ijkb0b + nh (ntb)
endif
enddo
enddo
enddo
enddo
ijkb0 = ijkb0 + nh (nt)
endif
enddo
enddo
enddo
#ifdef __PARA
call mp_sum ( dynwrk, intra_pool_comm )
#endif
do nu_i = 1, 3 * nat
do nu_j = 1, 3 * nat
ps = (0.0d0, 0.0d0)
do na_jcart = 1, 3 * nat
do na_icart = 1, 3 * nat
ps = ps + CONJG(u (na_icart, nu_i) ) * dynwrk (na_icart, &
na_jcart) * u (na_jcart, nu_j)
enddo
enddo
wdyn (nu_i, nu_j) = wdyn (nu_i, nu_j) + ps
enddo
enddo
! call tra_write_matrix('nldyn wdyn',wdyn,u,nat)
! call stop_ph(.true.)
IF (noncolin) THEN
deallocate (ps4_nc)
deallocate (ps3_nc)
deallocate (ps2_nc)
deallocate (ps1_nc)
deallocate (deff_nc)
ELSE
deallocate (ps4)
deallocate (ps3)
deallocate (ps2)
deallocate (ps1)
deallocate (deff)
END IF
return
end subroutine compute_nldyn