quantum-espresso/Modules/recvec_subs.f90

316 lines
9.6 KiB
Fortran

!
! Copyright (C) 2011 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!=----------------------------------------------------------------------=
MODULE recvec_subs
!=----------------------------------------------------------------------=
!! Subroutines generating G-vectors and variables nl* needed to map
!! G-vector components onto the FFT grid(s) in reciprocal space.
!
USE kinds, ONLY : dp
USE fft_types, ONLY: fft_stick_index, fft_type_descriptor
USE fft_ggen, ONLY : fft_set_nl
!
PRIVATE
SAVE
PUBLIC :: ggen, ggens
!=----------------------------------------------------------------------=
CONTAINS
!=----------------------------------------------------------------------=
!
!-----------------------------------------------------------------------
SUBROUTINE ggen ( dfftp, gamma_only, at, bg, gcutm, ngm_g, ngm, &
g, gg, mill, ig_l2g, gstart, no_global_sort )
!----------------------------------------------------------------------
!! This routine generates all the reciprocal lattice vectors
!! contained in the sphere of radius gcutm. Furthermore it
!! computes the indices nl which give the correspondence
!! between the fft mesh points and the array of g vectors.
!
USE mp, ONLY: mp_rank, mp_size, mp_sum
USE constants, ONLY : eps8
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(INOUT) :: dfftp
LOGICAL, INTENT(IN) :: gamma_only
REAL(DP), INTENT(IN) :: at(3,3), bg(3,3), gcutm
INTEGER, INTENT(IN) :: ngm_g
INTEGER, INTENT(INOUT) :: ngm
REAL(DP), INTENT(OUT) :: g(:,:), gg(:)
INTEGER, INTENT(OUT) :: mill(:,:), ig_l2g(:), gstart
! if no_global_sort is present (and it is true) G vectors are sorted only
! locally and not globally. In this case no global array needs to be
! allocated and sorted: saves memory and a lot of time for large systems.
!
LOGICAL, OPTIONAL, INTENT(IN) :: no_global_sort
!
! here a few local variables
!
REAL(DP) :: tx(3), ty(3), t(3)
REAL(DP), ALLOCATABLE :: tt(:)
INTEGER :: ngm_save, n1, n2, n3, ngm_offset, ngm_max, ngm_local
!
REAL(DP), ALLOCATABLE :: g2sort_g(:)
! array containing only g vectors for the current processor
INTEGER, ALLOCATABLE :: mill_unsorted(:,:)
! array containing all g vectors generators, on all processors
! (replicated data). When no_global_sort is present and .true.,
! only g-vectors for the current processor are stored
INTEGER, ALLOCATABLE :: igsrt(:), g2l(:)
!
INTEGER :: ni, nj, nk, i, j, k, ipol, ng, igl, indsw
INTEGER :: istart, jstart, kstart
INTEGER :: mype, npe
LOGICAL :: global_sort, is_local
INTEGER, ALLOCATABLE :: ngmpe(:)
!
global_sort = .TRUE.
IF( PRESENT( no_global_sort ) ) THEN
global_sort = .NOT. no_global_sort
END IF
!
IF( .NOT. global_sort ) THEN
ngm_max = ngm
ELSE
ngm_max = ngm_g
END IF
!
! save current value of ngm
!
ngm_save = ngm
!
ngm = 0
ngm_local = 0
!
! set the total number of fft mesh points and and initial value of gg
! The choice of gcutm is due to the fact that we have to order the
! vectors after computing them.
!
gg(:) = gcutm + 1.d0
!
! and computes all the g vectors inside a sphere
!
ALLOCATE( mill_unsorted( 3, ngm_save ) )
ALLOCATE( igsrt( ngm_max ) )
ALLOCATE( g2l( ngm_max ) )
ALLOCATE( g2sort_g( ngm_max ) )
!
g2sort_g(:) = 1.0d20
!
! allocate temporal array
!
ALLOCATE( tt( dfftp%nr3 ) )
!
! max miller indices (same convention as in module stick_set)
!
ni = (dfftp%nr1-1)/2
nj = (dfftp%nr2-1)/2
nk = (dfftp%nr3-1)/2
!
! gamma-only: exclude space with x < 0
!
IF ( gamma_only ) THEN
istart = 0
ELSE
istart = -ni
ENDIF
!
iloop: DO i = istart, ni
!
! gamma-only: exclude plane with x = 0, y < 0
!
IF ( gamma_only .and. i == 0 ) THEN
jstart = 0
ELSE
jstart = -nj
ENDIF
!
tx(1:3) = i * bg(1:3,1)
!
jloop: DO j = jstart, nj
!
IF ( .NOT. global_sort ) THEN
IF ( fft_stick_index( dfftp, i, j ) == 0 ) CYCLE jloop
is_local = .TRUE.
ELSE
IF ( dfftp%lpara .AND. fft_stick_index( dfftp, i, j ) == 0) THEN
is_local = .FALSE.
ELSE
is_local = .TRUE.
END IF
END IF
!
! gamma-only: exclude line with x = 0, y = 0, z < 0
!
IF ( gamma_only .and. i == 0 .and. j == 0 ) THEN
kstart = 0
ELSE
kstart = -nk
ENDIF
!
ty(1:3) = tx(1:3) + j * bg(1:3,2)
!
! compute all the norm square
!
DO k = kstart, nk
!
t(1) = ty(1) + k * bg(1,3)
t(2) = ty(2) + k * bg(2,3)
t(3) = ty(3) + k * bg(3,3)
tt(k-kstart+1) = t(1)**2 + t(2)**2 + t(3)**2
ENDDO
!
! save all the norm square within cutoff
!
DO k = kstart, nk
IF (tt(k-kstart+1) <= gcutm) THEN
ngm = ngm + 1
IF (ngm > ngm_max) CALL errore ('ggen 1', 'too many g-vectors', ngm)
IF ( tt(k-kstart+1) > eps8 ) THEN
g2sort_g(ngm) = tt(k-kstart+1)
ELSE
g2sort_g(ngm) = 0.d0
ENDIF
IF (is_local) THEN
ngm_local = ngm_local + 1
mill_unsorted( :, ngm_local ) = (/ i,j,k /)
g2l(ngm) = ngm_local
ELSE
g2l(ngm) = 0
ENDIF
ENDIF
ENDDO
ENDDO jloop
ENDDO iloop
IF (ngm /= ngm_max) &
CALL errore ('ggen', 'g-vectors missing !', abs(ngm - ngm_max))
!
igsrt(1) = 0
IF( .NOT. global_sort ) THEN
CALL hpsort_eps( ngm, g2sort_g, igsrt, eps8 )
ELSE
CALL hpsort_eps( ngm_g, g2sort_g, igsrt, eps8 )
END IF
DEALLOCATE( g2sort_g, tt )
IF( .NOT. global_sort ) THEN
!
! compute adeguate offsets in order to avoid overlap between
! g vectors once they are gathered on a single (global) array
!
mype = mp_rank( dfftp%comm )
npe = mp_size( dfftp%comm )
ALLOCATE( ngmpe( npe ) )
ngmpe = 0
ngmpe( mype + 1 ) = ngm
CALL mp_sum( ngmpe, dfftp%comm )
ngm_offset = 0
DO ng = 1, mype
ngm_offset = ngm_offset + ngmpe( ng )
END DO
DEALLOCATE( ngmpe )
!
END IF
ngm = 0
!
ngloop: DO ng = 1, ngm_max
!
IF (g2l(igsrt(ng))>0) THEN
! fetch the indices
i = mill_unsorted(1, g2l(igsrt(ng)))
j = mill_unsorted(2, g2l(igsrt(ng)))
k = mill_unsorted(3, g2l(igsrt(ng)))
!
ngm = ngm + 1
!
! Here map local and global g index !!! N.B: :
! the global G vectors arrangement depends on the number of processors
!
IF( .NOT. global_sort ) THEN
ig_l2g( ngm ) = ng + ngm_offset
ELSE
ig_l2g( ngm ) = ng
END IF
g(1:3, ngm) = i * bg (:, 1) + j * bg (:, 2) + k * bg (:, 3)
gg(ngm) = sum(g(1:3, ngm)**2)
ENDIF
ENDDO ngloop
DEALLOCATE( igsrt, g2l )
IF (ngm /= ngm_save) &
CALL errore ('ggen', 'g-vectors (ngm) missing !', abs(ngm - ngm_save))
!
! determine first nonzero g vector
!
IF (gg(1).le.eps8) THEN
gstart=2
ELSE
gstart=1
ENDIF
!
! Now set nl and nls with the correct fft correspondence
!
CALL fft_set_nl( dfftp, at, g, mill )
!
END SUBROUTINE ggen
!
!-----------------------------------------------------------------------
SUBROUTINE ggens( dffts, gamma_only, at, g, gg, mill, gcutms, ngms, &
gs, ggs )
!-----------------------------------------------------------------------
!! Initialize number and indices of g-vectors for a subgrid,
!! for exactly the same ordering as for the original FFT grid
!
IMPLICIT NONE
!
LOGICAL, INTENT(IN) :: gamma_only
TYPE (fft_type_descriptor), INTENT(INOUT) :: dffts
!! primitive lattice vectors
REAL(dp), INTENT(IN) :: at(3,3)
!! G-vectors in FFT grid
REAL(dp), INTENT(IN) :: g(:,:), gg(:)
!! Miller indices for G-vectors of FFT grid
INTEGER, INTENT(IN) :: mill(:,:)
!! cutoff for subgrid
REAL(DP), INTENT(IN):: gcutms
!! Local number of G-vectors in subgrid
INTEGER, INTENT(OUT):: ngms
!! Optionally: G-vectors and modules
REAL(DP), INTENT(INOUT), POINTER, OPTIONAL:: gs(:,:), ggs(:)
!
INTEGER :: i, ng, ngm
!
ngm = SIZE(gg)
ngms = dffts%ngm
IF ( ngms > ngm ) CALL errore ('ggens','wrong number of G-vectors',1)
!
IF ( PRESENT(gs) ) ALLOCATE ( gs(3,ngms) )
IF ( PRESENT(ggs)) ALLOCATE ( ggs(ngms) )
ng = 0
DO i = 1, ngm
IF ( gg(i) > gcutms ) exit
IF ( PRESENT(gs) ) gs (:,i) = g(:,i)
IF ( PRESENT(ggs)) ggs(i) = gg(i)
ng = i
END DO
IF ( ng /= ngms ) CALL errore ('ggens','mismatch in number of G-vectors',2)
!
CALL fft_set_nl ( dffts, at, g )
!
END SUBROUTINE ggens
!
!=----------------------------------------------------------------------=
END MODULE recvec_subs
!=----------------------------------------------------------------------=