quantum-espresso/test-suite/hp_insulator_paw/benchmark.out.git.inp=BN.sc...

913 lines
30 KiB
Plaintext

Program PWSCF v.6.5Max starts on 28Nov2019 at 18: 6:56
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
Waiting for input...
Reading input from standard input
Current dimensions of program PWSCF are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
file N.pbe-n-kjpaw_psl.0.1.UPF: wavefunction(s) 2P renormalized
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 313 151 55 18979 6695 1327
bravais-lattice index = 4
lattice parameter (alat) = 4.7419 a.u.
unit-cell volume = 397.0601 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 2
number of electrons = 8.00
number of Kohn-Sham states= 4
kinetic-energy cutoff = 25.0000 Ry
charge density cutoff = 200.0000 Ry
convergence threshold = 1.0E-10
mixing beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
celldm(1)= 4.741900 celldm(2)= 0.000000 celldm(3)= 4.300000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( -0.500000 0.866025 0.000000 )
a(3) = ( 0.000000 0.000000 4.300000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.577350 0.000000 )
b(2) = ( 0.000000 1.154701 0.000000 )
b(3) = ( 0.000000 0.000000 0.232558 )
PseudoPot. # 1 for N read from file:
../../pseudo/N.pbe-n-kjpaw_psl.0.1.UPF
MD5 check sum: 5f964142c164ed943b244cf6ba502af7
Pseudo is Projector augmented-wave + core cor, Zval = 5.0
Generated using "atomic" code by A. Dal Corso v.6.3
Shape of augmentation charge: PSQ
Using radial grid of 1085 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for B read from file:
../../pseudo/B.pbe-n-kjpaw_psl.0.1.UPF
MD5 check sum: ceac8b95c476086d1bc41dd68d84a36f
Pseudo is Ultrasoft + core correction, Zval = 3.0
Generated using "atomic" code by A. Dal Corso v.6.3MaX
Using radial grid of 1059 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
N 5.00 14.00674 N ( 1.00)
B 3.00 10.81000 B ( 1.00)
Simplified LDA+U calculation (l_max = 1) with parameters (eV):
atomic species L U alpha J0 beta
N 1 1.0000 0.0000 0.0000 0.0000
12 Sym. Ops. (no inversion) found ( 8 have fractional translation)
s frac. trans.
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [0,1,0]
cryst. s( 2) = ( -1 0 0 )
( 1 1 0 )
( 0 0 -1 )
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 3) = ( 0 1 0 ) f =( -0.5000000 )
( -1 -1 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s( 3) = ( -0.5000000 -0.8660254 0.0000000 ) f =( -0.2500000 )
( 0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
isym = 4 120 deg rotation - cryst. axis [0,0,-1]
cryst. s( 4) = ( -1 -1 0 ) f =( 0.0000000 )
( 1 0 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s( 4) = ( -0.5000000 0.8660254 0.0000000 ) f =( 0.2500000 )
( -0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
isym = 5 180 deg rotation - cryst. axis [1,-1,0]
cryst. s( 5) = ( 0 -1 0 ) f =( -0.5000000 )
( -1 0 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s( 5) = ( 0.5000000 -0.8660254 0.0000000 ) f =( -0.2500000 )
( -0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 6 180 deg rotation - cryst. axis [2,1,0]
cryst. s( 6) = ( 1 1 0 ) f =( 0.0000000 )
( 0 -1 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s( 6) = ( 0.5000000 0.8660254 0.0000000 ) f =( 0.2500000 )
( 0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 7 inv. 180 deg rotation - cart. axis [0,0,1]
cryst. s( 7) = ( 1 0 0 )
( 0 1 0 )
( 0 0 -1 )
cart. s( 7) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 8 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 8) = ( -1 0 0 )
( 1 1 0 )
( 0 0 1 )
cart. s( 8) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 inv. 60 deg rotation - cryst. axis [0,0,1]
cryst. s( 9) = ( -1 -1 0 ) f =( 0.0000000 )
( 1 0 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s( 9) = ( -0.5000000 0.8660254 0.0000000 ) f =( 0.2500000 )
( -0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 10 inv. 60 deg rotation - cryst. axis [0,0,-1]
cryst. s(10) = ( 0 1 0 ) f =( -0.5000000 )
( -1 -1 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s(10) = ( -0.5000000 -0.8660254 0.0000000 ) f =( -0.2500000 )
( 0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 11 inv. 180 deg rotation - cryst. axis [0,1,0]
cryst. s(11) = ( 1 1 0 ) f =( 0.0000000 )
( 0 -1 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s(11) = ( 0.5000000 0.8660254 0.0000000 ) f =( 0.2500000 )
( 0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
isym = 12 inv. 180 deg rotation - cryst. axis [1,1,0]
cryst. s(12) = ( 0 -1 0 ) f =( -0.5000000 )
( -1 0 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s(12) = ( 0.5000000 -0.8660254 0.0000000 ) f =( -0.2500000 )
( -0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
point group D_3h (-62m)
there are 6 classes
the character table:
E 2C3 3C2 s_h 2S3 3s_v
A'_1 1.00 1.00 1.00 1.00 1.00 1.00
A'_2 1.00 1.00 -1.00 1.00 1.00 -1.00
E' 2.00 -1.00 0.00 2.00 -1.00 0.00
A''1 1.00 1.00 1.00 -1.00 -1.00 -1.00
A''2 1.00 1.00 -1.00 -1.00 -1.00 1.00
E'' 2.00 -1.00 0.00 -2.00 1.00 0.00
the symmetry operations in each class and the name of the first element:
E 1
identity
2C3 3 4
120 deg rotation - cryst. axis [0,0,1]
3C2 2 6 5
180 deg rotation - cart. axis [0,1,0]
s_h 7
inv. 180 deg rotation - cart. axis [0,0,1]
2S3 9 10
inv. 60 deg rotation - cryst. axis [0,0,1]
3s_v 8 11 12
inv. 180 deg rotation - cart. axis [1,0,0]
Cartesian axes
site n. atom positions (alat units)
1 N tau( 1) = ( 0.0000000 -0.2886751 0.0000000 )
2 B tau( 2) = ( 0.0000000 0.2886751 0.0000000 )
Crystallographic axes
site n. atom positions (cryst. coord.)
1 N tau( 1) = ( -0.1666667 -0.3333333 0.0000000 )
2 B tau( 2) = ( 0.1666667 0.3333333 0.0000000 )
number of k points= 4
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( 0.0000000 0.2886751 0.0000000), wk = 0.7500000
k( 3) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.3750000
k( 4) = ( 0.2500000 0.4330127 0.0000000), wk = 0.7500000
cryst. coord.
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( 0.0000000 0.2500000 0.0000000), wk = 0.7500000
k( 3) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.3750000
k( 4) = ( 0.2500000 0.2500000 0.0000000), wk = 0.7500000
Dense grid: 18979 G-vectors FFT dimensions: ( 24, 24, 96)
Smooth grid: 6695 G-vectors FFT dimensions: ( 16, 16, 72)
Dynamical RAM for wfc: 0.05 MB
Dynamical RAM for wfc (w. buffer): 0.05 MB
Dynamical RAM for U proj.: 0.04 MB
Dynamical RAM for U proj. (w. buff.): 0.04 MB
Dynamical RAM for str. fact: 0.58 MB
Dynamical RAM for local pot: 0.00 MB
Dynamical RAM for nlocal pot: 0.20 MB
Dynamical RAM for qrad: 0.49 MB
Dynamical RAM for rho,v,vnew: 2.13 MB
Dynamical RAM for rhoin: 0.71 MB
Dynamical RAM for rho*nmix: 4.63 MB
Dynamical RAM for G-vectors: 1.14 MB
Dynamical RAM for h,s,v(r/c): 0.01 MB
Dynamical RAM for <psi|beta>: 0.00 MB
Dynamical RAM for psi: 0.20 MB
Dynamical RAM for hpsi: 0.20 MB
Dynamical RAM for spsi: 0.20 MB
Dynamical RAM for wfcinit/wfcrot: 0.21 MB
Dynamical RAM for addusdens: 3.40 MB
Estimated static dynamical RAM per process > 12.96 MB
Estimated max dynamical RAM per process > 16.36 MB
Estimated total dynamical RAM > 65.44 MB
Check: negative core charge= -0.000040
Initial potential from superposition of free atoms
starting charge 7.99971, renormalised to 8.00000
negative rho (up, down): 5.543E-05 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0551
-------
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 3.00000
eigenvalues:
0.500 0.500 0.500
eigenvectors:
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000
occupations:
0.500 0.000 0.000
0.000 0.500 0.000
0.000 0.000 0.500
N of occupied +U levels = 3.000000
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are NOT orthogonalized
Starting wfcs are 8 randomized atomic wfcs
Checking if some PAW data can be deallocated...
PAW data deallocated on 2 nodes for type: 1
total cpu time spent up to now is 0.7 secs
Self-consistent Calculation
iteration # 1 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.00E-02, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.54059
eigenvalues:
0.921 0.921 0.929
eigenvectors:
0.000 0.000 1.000
0.056 0.944 0.000
0.944 0.056 0.000
occupations:
0.929 0.000 -0.000
0.000 0.921 0.000
-0.000 0.000 0.921
N of occupied +U levels = 5.540595
--- exit write_ns ---
negative rho (up, down): 1.775E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0156
-------
total cpu time spent up to now is 0.8 secs
total energy = -34.48990479 Ry
Harris-Foulkes estimate = -34.70906088 Ry
estimated scf accuracy < 0.38557364 Ry
iteration # 2 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 4.82E-03, avg # of iterations = 2.5
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.24422
eigenvalues:
0.840 0.891 0.891
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.840 0.000 -0.000
0.000 0.891 0.000
-0.000 0.000 0.891
N of occupied +U levels = 5.244221
--- exit write_ns ---
negative rho (up, down): 3.167E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0194
-------
total cpu time spent up to now is 0.9 secs
total energy = -34.58256224 Ry
Harris-Foulkes estimate = -34.67466734 Ry
estimated scf accuracy < 0.17351279 Ry
iteration # 3 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 2.17E-03, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.38757
eigenvalues:
0.879 0.907 0.907
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.879 0.000 -0.000
0.000 0.907 0.000
-0.000 0.000 0.907
N of occupied +U levels = 5.387572
--- exit write_ns ---
negative rho (up, down): 2.587E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0203
-------
total cpu time spent up to now is 0.9 secs
total energy = -34.61791184 Ry
Harris-Foulkes estimate = -34.61862958 Ry
estimated scf accuracy < 0.00202700 Ry
iteration # 4 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 2.53E-05, avg # of iterations = 3.2
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.41996
eigenvalues:
0.892 0.909 0.909
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.892 0.000 -0.000
0.000 0.909 0.000
-0.000 0.000 0.909
N of occupied +U levels = 5.419961
--- exit write_ns ---
negative rho (up, down): 2.449E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0200
-------
total cpu time spent up to now is 1.0 secs
total energy = -34.61983009 Ry
Harris-Foulkes estimate = -34.62016513 Ry
estimated scf accuracy < 0.00121760 Ry
iteration # 5 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.52E-05, avg # of iterations = 1.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.41779
eigenvalues:
0.891 0.909 0.909
eigenvectors:
1.000 0.000 0.000
0.000 0.057 0.943
0.000 0.943 0.057
occupations:
0.891 0.000 -0.000
0.000 0.909 0.000
-0.000 0.000 0.909
N of occupied +U levels = 5.417792
--- exit write_ns ---
negative rho (up, down): 2.432E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0195
-------
total cpu time spent up to now is 1.0 secs
total energy = -34.61956706 Ry
Harris-Foulkes estimate = -34.61985614 Ry
estimated scf accuracy < 0.00054297 Ry
iteration # 6 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 6.79E-06, avg # of iterations = 2.5
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.40436
eigenvalues:
0.888 0.907 0.907
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.888 0.000 -0.000
0.000 0.907 0.000
-0.000 0.000 0.907
N of occupied +U levels = 5.404358
--- exit write_ns ---
negative rho (up, down): 2.384E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0196
-------
total cpu time spent up to now is 1.1 secs
total energy = -34.61971346 Ry
Harris-Foulkes estimate = -34.61975881 Ry
estimated scf accuracy < 0.00011066 Ry
iteration # 7 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.38E-06, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.40679
eigenvalues:
0.888 0.908 0.908
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.888 0.000 -0.000
0.000 0.908 0.000
-0.000 0.000 0.908
N of occupied +U levels = 5.406791
--- exit write_ns ---
negative rho (up, down): 2.360E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0196
-------
total cpu time spent up to now is 1.2 secs
total energy = -34.61972337 Ry
Harris-Foulkes estimate = -34.61972634 Ry
estimated scf accuracy < 0.00000765 Ry
iteration # 8 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 9.56E-08, avg # of iterations = 2.8
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.40824
eigenvalues:
0.889 0.908 0.908
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.889 0.000 -0.000
0.000 0.908 0.000
-0.000 0.000 0.908
N of occupied +U levels = 5.408240
--- exit write_ns ---
negative rho (up, down): 2.362E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0196
-------
total cpu time spent up to now is 1.2 secs
total energy = -34.61972554 Ry
Harris-Foulkes estimate = -34.61972565 Ry
estimated scf accuracy < 0.00000035 Ry
iteration # 9 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 4.40E-09, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.40839
eigenvalues:
0.889 0.908 0.908
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.889 0.000 -0.000
0.000 0.908 0.000
-0.000 0.000 0.908
N of occupied +U levels = 5.408387
--- exit write_ns ---
negative rho (up, down): 2.364E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0196
-------
total cpu time spent up to now is 1.3 secs
total energy = -34.61972553 Ry
Harris-Foulkes estimate = -34.61972560 Ry
estimated scf accuracy < 0.00000013 Ry
iteration # 10 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.67E-09, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.40827
eigenvalues:
0.889 0.908 0.908
eigenvectors:
1.000 0.000 0.000
0.000 0.057 0.943
0.000 0.943 0.057
occupations:
0.889 0.000 -0.000
0.000 0.908 0.000
-0.000 0.000 0.908
N of occupied +U levels = 5.408269
--- exit write_ns ---
negative rho (up, down): 2.363E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0196
-------
total cpu time spent up to now is 1.3 secs
total energy = -34.61972555 Ry
Harris-Foulkes estimate = -34.61972556 Ry
estimated scf accuracy < 0.00000001 Ry
iteration # 11 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.27E-10, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.40826
eigenvalues:
0.889 0.908 0.908
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.889 0.000 -0.000
0.000 0.908 0.000
-0.000 0.000 0.908
N of occupied +U levels = 5.408262
--- exit write_ns ---
negative rho (up, down): 2.363E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0196
-------
total cpu time spent up to now is 1.4 secs
total energy = -34.61972555 Ry
Harris-Foulkes estimate = -34.61972556 Ry
estimated scf accuracy < 6.0E-09 Ry
iteration # 12 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 7.46E-11, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.40828
eigenvalues:
0.889 0.908 0.908
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.889 0.000 -0.000
0.000 0.908 0.000
-0.000 0.000 0.908
N of occupied +U levels = 5.408282
--- exit write_ns ---
negative rho (up, down): 2.363E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0196
-------
total cpu time spent up to now is 1.5 secs
total energy = -34.61972555 Ry
Harris-Foulkes estimate = -34.61972555 Ry
estimated scf accuracy < 1.4E-10 Ry
iteration # 13 ecut= 25.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.72E-12, avg # of iterations = 2.5
--- enter write_ns ---
LDA+U parameters:
U( 1) = 1.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.40828
eigenvalues:
0.889 0.908 0.908
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.889 0.000 -0.000
0.000 0.908 0.000
-0.000 0.000 0.908
N of occupied +U levels = 5.408285
--- exit write_ns ---
negative rho (up, down): 2.363E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0196
-------
total cpu time spent up to now is 1.5 secs
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 837 PWs) bands (ev):
-20.2882 -8.2296 -4.1396 -4.1396
occupation numbers
1.0000 1.0000 1.0000 1.0000
k = 0.0000 0.2887 0.0000 ( 835 PWs) bands (ev):
-19.2456 -7.9848 -6.5805 -5.7662
occupation numbers
1.0000 1.0000 1.0000 1.0000
k = 0.0000-0.5774 0.0000 ( 830 PWs) bands (ev):
-17.2257 -11.9828 -6.9459 -3.7293
occupation numbers
1.0000 1.0000 1.0000 1.0000
k = 0.2500 0.4330 0.0000 ( 842 PWs) bands (ev):
-17.3991 -10.5898 -8.7626 -3.9427
occupation numbers
1.0000 1.0000 1.0000 1.0000
highest occupied level (ev): -3.7293
! total energy = -34.61972555 Ry
Harris-Foulkes estimate = -34.61972555 Ry
estimated scf accuracy < 9.6E-11 Ry
The total energy is the sum of the following terms:
one-electron contribution = -100.62511549 Ry
hartree contribution = 52.44132021 Ry
xc contribution = -8.40149382 Ry
ewald contribution = 30.20914862 Ry
Hubbard energy = 0.01958291 Ry
one-center paw contrib. = -8.26316798 Ry
-> PAW hartree energy AE = 24.12327630 Ry
-> PAW hartree energy PS = -24.09746043 Ry
-> PAW xc energy AE = -14.72301278 Ry
-> PAW xc energy PS = 6.43402892 Ry
-> total E_H with PAW = 52.46713608 Ry
-> total E_XC with PAW = -16.69047768 Ry
convergence has been achieved in 13 iterations
Writing output data file ./bn.save/
init_run : 0.30s CPU 0.30s WALL ( 1 calls)
electrons : 0.78s CPU 0.78s WALL ( 1 calls)
Called by init_run:
wfcinit : 0.00s CPU 0.01s WALL ( 1 calls)
wfcinit:atom : 0.00s CPU 0.00s WALL ( 1 calls)
wfcinit:wfcr : 0.00s CPU 0.00s WALL ( 1 calls)
potinit : 0.06s CPU 0.06s WALL ( 1 calls)
hinit0 : 0.23s CPU 0.23s WALL ( 1 calls)
Called by electrons:
c_bands : 0.09s CPU 0.09s WALL ( 13 calls)
sum_band : 0.10s CPU 0.10s WALL ( 13 calls)
v_of_rho : 0.30s CPU 0.30s WALL ( 14 calls)
v_h : 0.00s CPU 0.01s WALL ( 14 calls)
v_xc : 0.29s CPU 0.29s WALL ( 14 calls)
newd : 0.04s CPU 0.04s WALL ( 14 calls)
PAW_pot : 0.23s CPU 0.24s WALL ( 14 calls)
mix_rho : 0.04s CPU 0.03s WALL ( 13 calls)
Called by c_bands:
init_us_2 : 0.01s CPU 0.01s WALL ( 28 calls)
cegterg : 0.07s CPU 0.07s WALL ( 13 calls)
Called by sum_band:
sum_band:bec : 0.00s CPU 0.00s WALL ( 13 calls)
addusdens : 0.04s CPU 0.05s WALL ( 13 calls)
Called by *egterg:
h_psi : 0.07s CPU 0.07s WALL ( 40 calls)
s_psi : 0.00s CPU 0.00s WALL ( 41 calls)
g_psi : 0.00s CPU 0.00s WALL ( 26 calls)
cdiaghg : 0.00s CPU 0.00s WALL ( 39 calls)
cegterg:over : 0.00s CPU 0.00s WALL ( 26 calls)
cegterg:upda : 0.00s CPU 0.00s WALL ( 26 calls)
cegterg:last : 0.00s CPU 0.00s WALL ( 13 calls)
Called by h_psi:
h_psi:calbec : 0.00s CPU 0.00s WALL ( 40 calls)
vloc_psi : 0.07s CPU 0.07s WALL ( 40 calls)
add_vuspsi : 0.00s CPU 0.00s WALL ( 40 calls)
vhpsi : 0.00s CPU 0.00s WALL ( 40 calls)
General routines
calbec : 0.00s CPU 0.00s WALL ( 107 calls)
fft : 0.12s CPU 0.09s WALL ( 180 calls)
ffts : 0.01s CPU 0.01s WALL ( 27 calls)
fftw : 0.07s CPU 0.07s WALL ( 366 calls)
interpolate : 0.02s CPU 0.01s WALL ( 14 calls)
Parallel routines
Hubbard U routines
new_ns : 0.00s CPU 0.00s WALL ( 13 calls)
vhpsi : 0.00s CPU 0.00s WALL ( 40 calls)
PAW routines
PAW_pot : 0.23s CPU 0.24s WALL ( 14 calls)
PAW_symme : 0.00s CPU 0.00s WALL ( 27 calls)
PWSCF : 1.50s CPU 1.52s WALL
This run was terminated on: 18: 6:57 28Nov2019
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=