quantum-espresso/LAXlib/dspev_drv.f90

841 lines
22 KiB
Fortran

!
! Copyright (C) 2001-2008 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
MODULE dspev_module
IMPLICIT NONE
#include "la_param.f90"
SAVE
PRIVATE
PUBLIC :: pdspev_drv, dspev_drv
PUBLIC :: diagonalize_parallel, diagonalize_serial
#if defined __SCALAPACK
PUBLIC :: pdsyevd_drv
#endif
CONTAINS
SUBROUTINE ptredv( tv, a, lda, d, e, v, ldv, nrl, n, nproc, me, comm )
!
! Parallel version of the famous HOUSEHOLDER tridiagonalization
! Algorithm for simmetric matrix.
!
! AUTHOR : Carlo Cavazzoni - SISSA 1997
! comments and suggestions to : carlo.cavazzoni@cineca.it
!
! REFERENCES :
!
! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING.
! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING,
! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE.
!
! PARALLEL NUMERICAL ALGORITHMS,
! T.L. FREEMAN AND C.PHILLIPS,
! PRENTICE HALL INTERNATIONAL (1992).
!
!
!
! INPUTS :
!
! TV if it is true compute eigrnvectors "v"
!
! A(NRL,N) Local part of the global matrix A(N,N) to be reduced,
! only the upper triangle is needed.
! The rows of the matrix are distributed among processors
! with blocking factor 1.
! Example for NPROC = 4 :
! ROW | PE
! 1 | 0
! 2 | 1
! 3 | 2
! 4 | 3
! 5 | 0
! 6 | 1
! .. | ..
!
! LDA LEADING DIMENSION OF MATRIX A.
!
! LDV LEADING DIMENSION OF MATRIX V.
!
! NRL NUMBER OF ROWS BELONGING TO THE LOCAL PROCESSOR.
!
! N DIMENSION OF THE GLOBAL MATRIX.
!
! NPROC NUMBER OF PROCESSORS.
!
! ME INDEX OF THE LOCAL PROCESSOR (Starting from 0).
!
!
! OUTPUTS :
!
! V(NRL,N) Orthogonal transformation that tridiagonalize A,
! this matrix is distributed among processor
! in the same way as A.
!
! D(N) Diagonal elements of the tridiagonal matrix
! this vector is equal on all processors.
!
! E(N) Subdiagonal elements of the tridiagonal matrix
! this vector is equal on all processors.
!
!
IMPLICIT NONE
#if defined (__MPI)
!
include 'mpif.h'
!
#endif
LOGICAL, INTENT(IN) :: tv
INTEGER, intent(in) :: N, NRL, LDA, LDV
INTEGER, intent(in) :: NPROC, ME, comm
REAL(DP) :: A(LDA,N), D(N), E(N), V(LDV,N)
!
REAL(DP), external ::ddot
!
REAL(DP) :: g, scalef, sigma, kappa, f, h, tmp
REAL(DP), ALLOCATABLE :: u(:)
REAL(DP), ALLOCATABLE :: p(:)
REAL(DP), ALLOCATABLE :: vtmp(:)
REAL(DP) :: tu, tp, one_over_h
REAL(DP) :: one_over_scale
REAL(DP) :: redin(3), redout(3)
REAL(DP), ALLOCATABLE :: ul(:)
REAL(DP), ALLOCATABLE :: pl(:)
integer :: l, i, j, k, t, tl, ierr
integer :: kl, jl, ks, lloc
integer, ALLOCATABLE :: is(:)
integer, ALLOCATABLE :: ri(:)
! .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
IF( N == 0 ) THEN
RETURN
END IF
ALLOCATE( u( n+2 ), p( n+1 ), vtmp( n+2 ), ul( n ), pl( n ), is( n ), ri( n ) )
DO I = N, 1, -1
IS(I) = (I-1)/NPROC
RI(I) = MOD((I-1),NPROC) ! owner of I-th row
IF(ME .le. RI(I) ) then
IS(I) = IS(I) + 1
END IF
END DO
DO I = N, 2, -1
L = I - 1 ! first element
H = 0.0_DP
IF ( L > 1 ) THEN
SCALEF = 0.0_DP
DO K = 1, is(l)
SCALEF = SCALEF + DABS( A(K,I) )
END DO
#if defined __MPI
CALL MPI_ALLREDUCE( MPI_IN_PLACE, scalef, 1, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 1', ierr )
#endif
IF ( SCALEF .EQ. 0.0_DP ) THEN
!
IF (RI(L).EQ.ME) THEN
E(I) = A(is(L),I)
END IF
!
ELSE
! ...... CALCULATION OF SIGMA AND H
ONE_OVER_SCALE = 1.0_DP/SCALEF
SIGMA = 0.0_DP
DO k = 1,is(L)
A(k,I) = A(k,I) * ONE_OVER_SCALE
SIGMA = SIGMA + A(k,I)**2
END DO
IF( ri(l) .eq. me ) THEN
F = A( is(l), i )
ELSE
F = 0.0_DP
END IF
! CONSTRUCTION OF VECTOR U
vtmp( 1:l ) = 0.0_DP
k = ME + 1
DO kl = 1,is(l)
vtmp(k) = A(kl,I)
k = k + NPROC
END DO
DO kl = 1,is(l)
UL(kl) = A(kl,I)
END DO
#if defined __MPI
vtmp( l + 1 ) = sigma
vtmp( l + 2 ) = f
CALL MPI_ALLREDUCE( vtmp, u, L+2, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 2', ierr )
sigma = u( l + 1 )
f = u( l + 2 )
#else
u(1:l) = vtmp(1:l)
#endif
G = -SIGN(SQRT(SIGMA),F)
H = SIGMA - F*G
ONE_OVER_H = 1.0_DP/H
E(I) = SCALEF*G
U(L) = F - G
IF( RI(L) == ME ) THEN
UL(is(l)) = F - G
A(is(l),I) = F - G
END IF
! CONSTRUCTION OF VECTOR P
DO J = 1,L
vtmp(j) = 0.0_DP
DO KL = 1, IS(J)
vtmp(J) = vtmp(J) + A(KL,J) * UL(KL)
END DO
IF( L > J .AND. ME == RI(J) ) then
DO K = J+1,L
vtmp(J) = vtmp(J) + A(IS(J),K) * U(K)
END DO
END IF
vtmp(J) = vtmp(J) * ONE_OVER_H
END DO
KAPPA = 0.5_DP * ONE_OVER_H * ddot( l, vtmp, 1, u, 1 )
#if defined __MPI
vtmp( l + 1 ) = kappa
CALL MPI_ALLREDUCE( vtmp, p, L+1, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 3', ierr )
kappa = p( l + 1 )
#else
p(1:l) = vtmp(1:l)
#endif
CALL daxpy( l, -kappa, u, 1, p, 1 )
CALL DGER( is(l), l, -1.0_DP, ul, 1, p, 1, a, lda )
CALL DGER( is(l), l, -1.0_DP, p( me + 1 ), nproc, u, 1, a, lda )
END IF
ELSE
IF(RI(L).EQ.ME) THEN
G = A(is(l),I)
END IF
#if defined __MPI
CALL MPI_BCAST( g, 1, MPI_DOUBLE_PRECISION, ri( L ), comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_bcast 1', ierr )
#endif
E(I) = G
END IF
D(I) = H
END DO
E(1) = 0.0_DP
D(1) = 0.0_DP
IF( tv ) THEN
DO J = 1,N
V(1:nrl,J) = 0.0_DP
IF(RI(J).EQ.ME) THEN
V(IS(J),J) = 1.0_DP
END IF
END DO
DO I = 2,N
L = I - 1
LLOC = IS(L)
!
IF( D(I) .NE. 0.0_DP ) THEN
!
ONE_OVER_H = 1.0_DP/D(I)
!
IF( lloc > 0 ) THEN
CALL DGEMV( 't', lloc, l, 1.0d0, v(1,1), ldv, a(1,i), 1, 0.0d0, p(1), 1 )
ELSE
P(1:l) = 0.0d0
END IF
#if defined __MPI
CALL MPI_ALLREDUCE( p, vtmp, L, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 4', ierr )
#else
vtmp(1:l) = p(1:l)
#endif
IF( lloc > 0 ) THEN
CALL DGER( lloc, l, -ONE_OVER_H, a(1,i), 1, vtmp, 1, v, ldv )
END IF
END IF
END DO
END IF
DO I = 1,N
U(I) = 0.0_DP
IF(RI(I).eq.ME) then
U(I) = A(IS(I),I)
END IF
END DO
#if defined __MPI
CALL MPI_ALLREDUCE( u, d, n, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 5', ierr )
#else
D(1:N) = U(1:N)
#endif
DEALLOCATE( u, p, vtmp, ul, pl, is, ri )
RETURN
END SUBROUTINE ptredv
!==----------------------------------------------==!
SUBROUTINE ptqliv( tv, d, e, n, z, ldz, nrl, mpime, comm )
!
! Modified QL algorithm for CRAY T3E PARALLEL MACHINE
! calculate the eigenvectors and eigenvalues of a matrix reduced to
! tridiagonal form by PTREDV.
!
! AUTHOR : Carlo Cavazzoni - SISSA 1997
! comments and suggestions to : carlo.cavazzoni@cineca.it
!
! REFERENCES :
!
! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING.
! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING,
! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE.
!
! PARALLEL NUMERICAL ALGORITHMS,
! T.L. FREEMAN AND C.PHILLIPS,
! PRENTICE HALL INTERNATIONAL (1992).
!
! NOTE : the algorithm that finds the eigenvalues is not parallelized
! ( it scales as O(N^2) ), I preferred to parallelize only the
! updating of the eigenvectors because it is the most costly
! part of the algorithm ( it scales as O(N^3) ).
! For large matrix in practice all the time is spent in the updating
! that in this routine scales linearly with the number of processors,
! in fact there is no communication at all.
!
!
! INPUTS :
!
! TV if it is true compute eigrnvectors "z"
!
! D(N) Diagonal elements of the tridiagonal matrix
! this vector is equal on all processors.
!
! E(N) Subdiagonal elements of the tridiagonal matrix
! this vector is equal on all processors.
!
! N DIMENSION OF THE GLOBAL MATRIX.
!
! NRL NUMBER OF ROWS OF Z BELONGING TO THE LOCAL PROCESSOR.
!
! LDZ LEADING DIMENSION OF MATRIX Z.
!
! Z(LDZ,N) Orthogonal transformation that tridiagonalizes the original
! matrix A.
! The rows of the matrix are distributed among processors
! with blocking factor 1.
! Example for NPROC = 4 :
! ROW | PE
! 1 | 0
! 2 | 1
! 3 | 2
! 4 | 3
! 5 | 0
! 6 | 1
! .. | ..
!
!
!
! OUTPUTS :
!
! Z(LDZ,N) EIGENVECTORS OF THE ORIGINAL MATRIX.
! THE Jth COLUMN of Z contains the eigenvectors associated
! with the jth eigenvalue.
! The eigenvectors are scattered among processors (4PE examp. )
! eigenvector | PE
! elements |
! V(1) | 0
! V(2) | 1
! V(3) | 2
! V(4) | 3
! V(5) | 0
! V(6) | 1
! .... ..
!
! D(N) Eigenvalues of the original matrix,
! this vector is equal on all processors.
!
!
!
!
IMPLICIT NONE
#if defined (__MPI)
!
include 'mpif.h'
!
#endif
LOGICAL, INTENT(IN) :: tv
INTEGER, INTENT(IN) :: n, nrl, ldz, mpime, comm
REAL(DP) :: d(n), e(n)
REAL(DP) :: z(ldz,n)
INTEGER :: i, iter, mk, k, l, m, ierr
REAL(DP) :: b, dd, f, g, p, r, c, s
REAL(DP), ALLOCATABLE :: cv(:,:)
REAL(DP), ALLOCATABLE :: fv1(:)
REAL(DP), ALLOCATABLE :: fv2(:)
ALLOCATE( cv( 2,n ) )
ALLOCATE( fv1( nrl ) )
ALLOCATE( fv2( nrl ) )
do l = 2,n
e(l-1) = e(l)
end do
do l=1,n
iter=0
1 do m=l,n-1
dd = abs(d(m))+abs(d(m+1))
if ( abs(e(m))+dd .eq. dd ) goto 2
end do
m=n
2 if ( m /= l ) then
if ( iter == 200 ) then
call lax_error__(' tqli ',' too many iterations ', iter)
end if
iter=iter+1
!
! iteration is performed on one processor and results broadcast
! to all others to prevent potential problems if all processors
! do not behave in exactly the same way (even with the same data!)
!
if ( mpime == 0 ) then
g=(d(l+1)-d(l))/(2.0_DP*e(l))
r=pythag(g,1.0_DP)
g=d(m)-d(l)+e(l)/(g+sign(r,g))
s=1.0_DP
c=1.0_DP
p=0.0_DP
do i=m-1,l,-1
f=s*e(i)
b=c*e(i)
r=pythag(f,g)
e(i+1)=r
if ( r == 0.0_DP) then
d(i+1)=d(i+1)-p
e(m)=0.0_DP
goto 1
endif
c=g/r
g=d(i+1)-p
s=f/r
r=(d(i)-g)*s+2.0_DP*c*b
p=s*r
d(i+1)=g+p
g=c*r-b
!
cv(1,i-l+1) = c
cv(2,i-l+1) = s
!cv(1,i) = c
!cv(2,i) = s
end do
!
d(l)=d(l)-p
e(l)=g
e(m)=0.0_DP
end if
#if defined __MPI
CALL MPI_BCAST( cv, 2*(m-l), MPI_DOUBLE_PRECISION, 0, comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_bcast 2', ierr )
CALL MPI_BCAST( d(l), m-l+1, MPI_DOUBLE_PRECISION, 0, comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_bcast 3', ierr )
CALL MPI_BCAST( e(l), m-l+1, MPI_DOUBLE_PRECISION, 0, comm, ierr )
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_bcast 4', ierr )
#endif
if( tv ) then
do i=m-1,l,-1
do k=1,nrl
fv2(k) =z(k,i+1)
end do
do k=1,nrl
fv1(k) =z(k,i)
end do
c = cv(1,i-l+1)
s = cv(2,i-l+1)
do k=1,nrl
z(k,i+1) =s*fv1(k) + c*fv2(k)
z(k,i) =c*fv1(k) - s*fv2(k)
end do
end do
end if
goto 1
endif
end do
DEALLOCATE( cv )
DEALLOCATE( fv1 )
DEALLOCATE( fv2 )
RETURN
END SUBROUTINE ptqliv
!==----------------------------------------------==!
SUBROUTINE peigsrtv(tv,d,v,ldv,n,nrl)
!
! This routine sorts eigenvalues and eigenvectors
! generated by PTREDV and PTQLIV.
!
! AUTHOR : Carlo Cavazzoni - SISSA 1997
! comments and suggestions to : carlo.cavazzoni@cineca.it
!
IMPLICIT NONE
LOGICAL, INTENT(IN) :: tv
INTEGER, INTENT (IN) :: n,ldv,nrl
REAL(DP), INTENT(INOUT) :: d(n),v(ldv,n)
INTEGER :: i,j,k
REAL(DP):: p
do 13 i=1,n-1
k=i
p=d(i)
do j=i+1,n
if(d(j).le.p)then
k=j
p=d(j)
endif
end do
if(k.ne.i)then
d(k)=d(i)
d(i)=p
!
! Exchange local elements of eigenvectors.
!
if( tv ) then
do j=1,nrl
p=v(j,i)
v(j,i)=v(j,k)
v(j,k)=p
END DO
end if
endif
13 continue
return
END SUBROUTINE peigsrtv
!
!-------------------------------------------------------------------------
FUNCTION pythag(a,b)
IMPLICIT NONE
REAL(DP) :: a, b, pythag
REAL(DP) :: absa, absb
absa=abs(a)
absb=abs(b)
if(absa.gt.absb)then
pythag=absa*sqrt(1.0_DP+(absb/absa)**2)
else
if(absb.eq.0.0_DP)then
pythag=0.0_DP
else
pythag=absb*sqrt(1.0_DP+(absa/absb)**2)
endif
endif
return
END FUNCTION pythag
!
!==----------------------------------------------==!
SUBROUTINE pdspev_drv( jobz, ap, lda, w, z, ldz, &
nrl, n, nproc, mpime, comm )
IMPLICIT NONE
CHARACTER, INTENT(IN) :: JOBZ
INTEGER, INTENT(IN) :: lda, ldz, nrl, n, nproc, mpime
INTEGER, INTENT(IN) :: comm
REAL(DP) :: ap( lda, * ), w( * ), z( ldz, * )
REAL(DP), ALLOCATABLE :: sd( : )
LOGICAL :: tv
!
IF( n < 1 ) RETURN
!
tv = .false.
IF( jobz == 'V' .OR. jobz == 'v' ) tv = .true.
ALLOCATE ( sd ( n ) )
CALL ptredv( tv, ap, lda, w, sd, z, ldz, nrl, n, nproc, mpime, comm)
CALL ptqliv( tv, w, sd, n, z, ldz, nrl, mpime, comm)
DEALLOCATE ( sd )
CALL peigsrtv( tv, w, z, ldz, n, nrl)
RETURN
END SUBROUTINE pdspev_drv
!==----------------------------------------------==!
SUBROUTINE dspev_drv( JOBZ, UPLO, N, AP, W, Z, LDZ )
IMPLICIT NONE
CHARACTER :: JOBZ, UPLO
INTEGER :: IOPT, INFO, LDZ, N
REAL(DP) :: AP( * ), W( * ), Z( LDZ, * )
REAL(DP), ALLOCATABLE :: WORK(:)
IF( n < 1 ) RETURN
ALLOCATE( work( 3*n ) )
CALL DSPEV(jobz, uplo, n, ap(1), w(1), z(1,1), ldz, work, INFO)
IF( info .NE. 0 ) THEN
CALL lax_error__( ' dspev_drv ', ' diagonalization failed ',info )
END IF
DEALLOCATE( work )
RETURN
END SUBROUTINE dspev_drv
#if defined __SCALAPACK
SUBROUTINE pdsyevd_drv( tv, n, nb, s, lds, w, ortho_cntx, ortho_comm )
#if defined(__ELPA)
USE elpa1
#endif
IMPLICIT NONE
LOGICAL, INTENT(IN) :: tv
! if tv is true compute eigenvalues and eigenvectors (not used)
INTEGER, INTENT(IN) :: nb, n, ortho_cntx, ortho_comm
! nb = block size, n = matrix size, ortho_cntx = BLACS context,
! ortho_comm = MPI communicator
INTEGER, INTENT(IN) :: lds
! lds = leading dim of s
REAL(DP) :: s(:,:), w(:)
! input: s = matrix to be diagonalized
! output: s = eigenvectors, w = eigenvalues
INTEGER :: desch( 10 )
REAL(DP) :: rtmp( 4 )
INTEGER :: itmp( 4 )
REAL(DP), ALLOCATABLE :: work(:)
REAL(DP), ALLOCATABLE :: vv(:,:)
INTEGER, ALLOCATABLE :: iwork(:)
INTEGER :: LWORK, LIWORK, info
CHARACTER :: jobv
INTEGER :: i, ierr
#if defined(__ELPA)
INTEGER :: nprow,npcol,my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols
#endif
IF( SIZE( s, 1 ) /= lds ) &
CALL lax_error__( ' pdsyevd_drv ', ' wrong matrix leading dimension ', 1 )
!
IF( tv ) THEN
ALLOCATE( vv( SIZE( s, 1 ), SIZE( s, 2 ) ) )
jobv = 'V'
ELSE
CALL lax_error__('pdsyevd_drv','PDSYEVD does not compute eigenvalue only',1)
END IF
CALL descinit( desch, n, n, nb, nb, 0, 0, ortho_cntx, SIZE( s, 1 ) , info )
IF( info /= 0 ) CALL lax_error__( ' pdsyevd_drv ', ' desckinit ', ABS( info ) )
lwork = -1
liwork = 1
itmp = 0
rtmp = 0.0_DP
#if defined(__ELPA)
CALL BLACS_Gridinfo(ortho_cntx,nprow, npcol, my_prow,my_pcol)
CALL get_elpa_row_col_comms(ortho_comm, my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols)
CALL solve_evp_real(n, n, s, lds, w, vv, lds ,nb ,mpi_comm_rows, mpi_comm_cols)
IF( tv ) s = vv
IF( ALLOCATED( vv ) ) DEALLOCATE( vv )
#if defined __MPI
CALL mpi_comm_free( mpi_comm_rows, ierr )
CALL mpi_comm_free( mpi_comm_cols, ierr )
#endif
#else
CALL PDSYEVD( jobv, 'L', n, s, 1, 1, desch, w, vv, 1, 1, desch, rtmp, lwork, itmp, liwork, info )
IF( info /= 0 ) CALL lax_error__( ' pdsyevd_drv ', ' PDSYEVD ', ABS( info ) )
lwork = MAX( 131072, 2*INT( rtmp(1) ) + 1 )
liwork = MAX( 8*n , itmp(1) + 1 )
ALLOCATE( work( lwork ) )
ALLOCATE( iwork( liwork ) )
CALL PDSYEVD( jobv, 'L', n, s, 1, 1, desch, w, vv, 1, 1, desch, work, lwork, iwork, liwork, info )
IF( info /= 0 ) CALL lax_error__( ' pdsyevd_drv ', ' PDSYEVD ', ABS( info ) )
IF( tv ) s = vv
IF( ALLOCATED( vv ) ) DEALLOCATE( vv )
DEALLOCATE( work )
DEALLOCATE( iwork )
#endif
RETURN
END SUBROUTINE pdsyevd_drv
#endif
! ----------------------------------------------
! Simplified driver
SUBROUTINE diagonalize_parallel( n, rhos, rhod, s, desc )
USE descriptors
IMPLICIT NONE
REAL(DP), INTENT(IN) :: rhos(:,:) ! input symmetric matrix
REAL(DP) :: rhod(:) ! output eigenvalues
REAL(DP) :: s(:,:) ! output eigenvectors
INTEGER, INTENT(IN) :: n ! size of the global matrix
TYPE(la_descriptor), INTENT(IN) :: desc
IF( n < 1 ) RETURN
! Matrix is distributed on the same processors group
! used for parallel matrix multiplication
!
IF( SIZE(s,1) /= SIZE(rhos,1) .OR. SIZE(s,2) /= SIZE(rhos,2) ) &
CALL lax_error__( " diagonalize_parallel ", " inconsistent dimension for s and rhos ", 1 )
IF ( desc%active_node > 0 ) THEN
!
IF( SIZE(s,1) /= desc%nrcx ) &
CALL lax_error__( " diagonalize_parallel ", " inconsistent dimension ", 1)
!
! Compute local dimension of the cyclically distributed matrix
!
s = rhos
!
#ifdef __SCALAPACK
CALL pdsyevd_drv( .true. , n, desc%nrcx, s, SIZE(s,1), rhod, desc%cntx, desc%comm )
#else
CALL qe_pdsyevd( .true., n, desc, s, SIZE(s,1), rhod )
#endif
!
END IF
RETURN
END SUBROUTINE diagonalize_parallel
SUBROUTINE diagonalize_serial( n, rhos, rhod )
IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL(DP) :: rhos(:,:)
REAL(DP) :: rhod(:)
!
! inputs:
! n size of the eigenproblem
! rhos the symmetric matrix
! outputs:
! rhos eigenvectors
! rhod eigenvalues
!
REAL(DP), ALLOCATABLE :: aux(:)
INTEGER :: i, j, k
IF( n < 1 ) RETURN
ALLOCATE( aux( n * ( n + 1 ) / 2 ) )
! pack lower triangle of rho into aux
!
k = 0
DO j = 1, n
DO i = j, n
k = k + 1
aux( k ) = rhos( i, j )
END DO
END DO
CALL dspev_drv( 'V', 'L', n, aux, rhod, rhos, SIZE(rhos,1) )
DEALLOCATE( aux )
RETURN
END SUBROUTINE diagonalize_serial
END MODULE dspev_module