quantum-espresso/PH/symdynph_gq.f90

167 lines
5.3 KiB
Fortran

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine symdynph_gq (xq, phi, s, invs, rtau, irt, irgq, nsymq, &
nat, irotmq, minus_q)
!-----------------------------------------------------------------------
!
! This routine receives as input an unsymmetrized dynamical
! matrix expressed on the crystal axes and imposes the symmetry
! of the small group of q. Furthermore it imposes also the symmetry
! q -> -q+G if present.
!
!
#include "f_defs.h"
USE kinds, only : DP
USE constants, ONLY: tpi
implicit none
!
! The dummy variables
!
integer :: nat, s (3, 3, 48), irt (48, nat), irgq (48), invs (48), &
nsymq, irotmq
! input: the number of atoms
! input: the symmetry matrices
! input: the rotated of each vector
! input: the small group of q
! input: the inverse of each matrix
! input: the order of the small gro
! input: the rotation sending q ->
real(DP) :: xq (3), rtau (3, 48, nat)
! input: the q point
! input: the R associated at each t
logical :: minus_q
! input: true if a symmetry q->-q+G
complex(DP) :: phi (3, 3, nat, nat)
! inp/out: the matrix to symmetrize
!
! local variables
!
integer :: isymq, sna, snb, irot, na, nb, ipol, jpol, lpol, kpol, &
iflb (nat, nat)
! counters, indices, work space
real(DP) :: arg
! the argument of the phase
complex(DP) :: phip (3, 3, nat, nat), work (3, 3), fase, faseq (48)
! work space, phase factors
!
! We start by imposing hermiticity
!
do na = 1, nat
do nb = 1, nat
do ipol = 1, 3
do jpol = 1, 3
phi (ipol, jpol, na, nb) = 0.5d0 * (phi (ipol, jpol, na, nb) &
+ CONJG(phi (jpol, ipol, nb, na) ) )
phi (jpol, ipol, nb, na) = CONJG(phi (ipol, jpol, na, nb) )
enddo
enddo
enddo
enddo
!
! If no other symmetry is present we quit here
!
if ( (nsymq == 1) .and. (.not.minus_q) ) return
!
! Then we impose the symmetry q -> -q+G if present
!
if (minus_q) then
do na = 1, nat
do nb = 1, nat
do ipol = 1, 3
do jpol = 1, 3
work(:,:) = (0.d0, 0.d0)
sna = irt (irotmq, na)
snb = irt (irotmq, nb)
arg = 0.d0
do kpol = 1, 3
arg = arg + (xq (kpol) * (rtau (kpol, irotmq, na) - &
rtau (kpol, irotmq, nb) ) )
enddo
arg = arg * tpi
fase = CMPLX (cos (arg), sin (arg) )
#if defined __ALTIX
!DIR$ unroll (0)
#endif
do kpol = 1, 3
do lpol = 1, 3
work (ipol, jpol) = work (ipol, jpol) + &
s (ipol, kpol, irotmq) * s (jpol, lpol, irotmq) &
* phi (kpol, lpol, sna, snb) * fase
enddo
enddo
phip (ipol, jpol, na, nb) = (phi (ipol, jpol, na, nb) + &
CONJG( work (ipol, jpol) ) ) * 0.5d0
enddo
enddo
enddo
enddo
phi = phip
endif
!
! Here we symmetrize with respect to the small group of q
!
if (nsymq == 1) return
iflb (:, :) = 0
do na = 1, nat
do nb = 1, nat
if (iflb (na, nb) == 0) then
work(:,:) = (0.d0, 0.d0)
do isymq = 1, nsymq
irot = irgq (isymq)
sna = irt (irot, na)
snb = irt (irot, nb)
arg = 0.d0
do ipol = 1, 3
arg = arg + (xq (ipol) * (rtau (ipol, irot, na) - &
rtau (ipol, irot, nb) ) )
enddo
arg = arg * tpi
faseq (isymq) = CMPLX (cos (arg), sin (arg) )
do ipol = 1, 3
do jpol = 1, 3
do kpol = 1, 3
do lpol = 1, 3
work (ipol, jpol) = work (ipol, jpol) + &
s (ipol, kpol, irot) * s (jpol, lpol, irot) &
* phi (kpol, lpol, sna, snb) * faseq (isymq)
enddo
enddo
enddo
enddo
enddo
do isymq = 1, nsymq
irot = irgq (isymq)
sna = irt (irot, na)
snb = irt (irot, nb)
do ipol = 1, 3
do jpol = 1, 3
phi (ipol, jpol, sna, snb) = (0.d0, 0.d0)
do kpol = 1, 3
do lpol = 1, 3
phi (ipol, jpol, sna, snb) = phi (ipol, jpol, sna, snb) &
+ s (ipol, kpol, invs (irot) ) * s (jpol, lpol, invs (irot) ) &
* work (kpol, lpol) * CONJG(faseq (isymq) )
enddo
enddo
enddo
enddo
iflb (sna, snb) = 1
enddo
endif
enddo
enddo
phi (:, :, :, :) = phi (:, :, :, :) / DBLE(nsymq)
return
end subroutine symdynph_gq