quantum-espresso/Modules/radial_gradients.f90

158 lines
4.6 KiB
Fortran

!
! Copyright (C) 2009 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
subroutine radial_gradient(f,gf,r,mesh,iflag)
!
! This subroutine calculates the derivative with respect to r of a
! radial function defined on the mesh r. If iflag=0 it uses all mesh
! points. If iflag=1 it uses only a coarse grained mesh close to the
! origin, to avoid large errors in the derivative when the function
! is too smooth.
!
use kinds, only : DP
implicit none
integer, intent(in) :: mesh, iflag
real(DP), intent(in) :: f(mesh), r(mesh)
real(DP), intent(out) :: gf(mesh)
integer :: i,j,k,imin,npoint
real(DP) :: delta, b(5), faux(6), raux(6)
!
! This formula is used in the all-electron case.
!
if (iflag==0) then
do i=2, mesh-1
gf(i)=( (r(i+1)-r(i))**2*(f(i-1)-f(i)) &
-(r(i-1)-r(i))**2*(f(i+1)-f(i)) ) &
/((r(i+1)-r(i))*(r(i-1)-r(i))*(r(i+1)-r(i-1)))
enddo
gf(mesh)=0.0_dp
!
! The gradient in the first point is a linear interpolation of the
! gradient at point 2 and 3.
!
gf(1) = gf(2) + (gf(3)-gf(2)) * (r(1)-r(2)) / (r(3)-r(2))
return
endif
!
! If the input function is slowly changing (as the pseudocharge),
! the previous formula is affected by numerical errors close to the
! origin where the r points are too close one to the other. Therefore
! we calculate the gradient on a coarser mesh. This gradient is often
! more accurate but still does not remove all instabilities observed
! with the GGA.
! At larger r the distances between points become larger than delta
! and this formula coincides with the previous one.
! (ADC 08/2007)
!
delta=0.00001_dp
imin=1
points: do i=2, mesh
do j=i+1,mesh
if (r(j)>r(i)+delta) then
do k=i-1,1,-1
if (r(k)<r(i)-delta) then
gf(i)=( (r(j)-r(i))**2*(f(k)-f(i)) &
-(r(k)-r(i))**2*(f(j)-f(i)) ) &
/((r(j)-r(i))*(r(k)-r(i))*(r(j)-r(k)))
cycle points
endif
enddo
!
! if the code arrives here there are not enough points on the left:
! r(i)-delta is smaller than r(1).
!
imin=i
cycle points
endif
enddo
!
! If the code arrives here there are not enough points on the right.
! It should happen only at mesh.
! NB: the f function is assumed to be vanishing for large r, so the gradient
! in the last points is taken as zero.
!
gf(i)=0.0_DP
enddo points
!
! In the first imin points the previous formula cannot be
! used. We interpolate with a polynomial the points already found
! and extrapolate in the points from 1 to imin.
! Presently we fit 5 points with a 3rd degree polynomial.
!
npoint=5
raux=0.0_DP
faux=0.0_DP
faux(1)=gf(imin+1)
raux(1)=r(imin+1)
j=imin+1
points_fit: do k=2,npoint
do i=j,mesh-1
if (r(i)>r(imin+1)+(k-1)*delta) then
faux(k)=gf(i)
raux(k)=r(i)
j=i+1
cycle points_fit
endif
enddo
enddo points_fit
call fit_pol(raux,faux,npoint,3,b)
do i=1,imin
gf(i)=b(1)+r(i)*(b(2)+r(i)*(b(3)+r(i)*b(4)))
enddo
return
end subroutine radial_gradient
subroutine fit_pol(xdata,ydata,n,degree,b)
!
! This routine finds the coefficients of the least-square polynomial which
! interpolates the n input data points.
!
use kinds, ONLY : DP
implicit none
integer, intent(in) :: n, degree
real(DP), intent(in) :: xdata(n), ydata(n)
real(DP), intent(out) :: b(degree+1)
integer :: ipiv(degree+1), info, i, j, k
real(DP) :: bmat(degree+1,degree+1), amat(degree+1,n)
amat(1,:)=1.0_DP
do i=2,degree+1
do j=1,n
amat(i,j)=amat(i-1,j)*xdata(j)
enddo
enddo
do i=1,degree+1
b(i)=0.0_DP
do k=1,n
b(i)=b(i)+ydata(k)*xdata(k)**(i-1)
enddo
enddo
do i=1,degree+1
do j=1,degree+1
bmat(i,j)=0.0_DP
do k=1,n
bmat(i,j)=bmat(i,j)+amat(i,k)*amat(j,k)
enddo
enddo
enddo
!
! This lapack routine solves the linear system that gives the
! coefficients of the interpolating polynomial.
!
call DGESV(degree+1, 1, bmat, degree+1, ipiv, b, degree+1, info)
if (info.ne.0) call errore('pol_fit','problems with the linear system', &
abs(info))
return
end subroutine fit_pol