quantum-espresso/PHonon/PH/drhodvnl.f90

257 lines
10 KiB
Fortran

!
! Copyright (C) 2001-2008 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine drhodvnl (ik, ikk, nper, nu_i0, wdyn, dbecq, dalpq)
!-----------------------------------------------------------------------
!
! This subroutine computes the electronic term 2 <dpsi|dv-e ds|psi> of
! the dynamical matrix. It can be used both for KB and for US
! pseudopotentials. All the nonlocal (and overlap matrix) terms
! are computed here. The contribution of the local potential is not
! computed here. This routine must be called for each k point and
! accumulates in wdyn the contribution of each k point.
!
USE kinds, ONLY : DP
USE ions_base, ONLY : nat, ntyp => nsp, ityp
USE noncollin_module, ONLY : noncolin, npol
USE uspp, ONLY : okvan, nkb
USE uspp_param,ONLY : nh, nhm
USE becmod, ONLY : bec_type
USE wvfct, ONLY : nbnd, et
USE klist, ONLY : wk
USE lsda_mod, ONLY : current_spin, nspin
USE spin_orb, ONLY : lspinorb
USE phus, ONLY : int1, int1_nc, int2, int2_so, alphap
USE lrus, ONLY : becp1
USE mp_bands, ONLY: intra_bgrp_comm
USE mp, ONLY: mp_sum
implicit none
integer :: ik, ikk, nper, nu_i0
! input: the current k point
! input: the number of perturbations
! input: the initial mode
TYPE(bec_type) :: dbecq(nper), dalpq(3,nper)
! input: the becp with psi_{k+q}
! input: the alphap with psi_{k}
complex(DP) :: wdyn (3 * nat, 3 * nat)
! output: the term of the dynamical matryx
complex(DP) :: ps, ps_nc(npol), dynwrk (3 * nat, 3 * nat)
! dynamical matrix
complex(DP) , allocatable :: ps1 (:,:), ps2 (:,:,:)
complex(DP) , allocatable :: ps1_nc (:,:,:), ps2_nc (:,:,:,:), &
deff_nc(:,:,:,:)
real(DP), allocatable :: deff(:,:,:)
integer :: ibnd, ijkb0, ijkb0b, ih, jh, ikb, jkb, ipol, &
startb, lastb, iper, na, nb, nt, ntb, mu, nu, is, js, ijs
! counters
IF (noncolin) THEN
allocate (ps1_nc ( nkb, npol, nbnd))
allocate (ps2_nc ( nkb, npol, nbnd, 3))
allocate (deff_nc ( nhm, nhm, nat, nspin ))
ps1_nc = (0.d0, 0.d0)
ps2_nc = (0.d0, 0.d0)
ELSE
allocate (ps1 ( nkb , nbnd))
allocate (ps2 ( nkb , nbnd , 3))
allocate (deff ( nhm, nhm, nat ))
ps1 = (0.d0, 0.d0)
ps2 = (0.d0, 0.d0)
END IF
dynwrk (:, :) = (0.d0, 0.d0)
call divide (intra_bgrp_comm, nbnd, startb, lastb)
!
! Here we prepare the two terms
!
do ibnd = startb, lastb
IF (noncolin) THEN
CALL compute_deff_nc(deff_nc,et(ibnd,ikk))
ELSE
CALL compute_deff(deff,et(ibnd,ikk))
ENDIF
ijkb0 = 0
do nt = 1, ntyp
do na = 1, nat
if (ityp (na) == nt) then
do ih = 1, nh (nt)
ikb = ijkb0 + ih
do jh = 1, nh (nt)
jkb = ijkb0 + jh
IF (noncolin) THEN
ijs=0
DO is=1, npol
DO js=1, npol
ijs=ijs+1
ps1_nc(ikb,is,ibnd)=ps1_nc(ikb,is,ibnd) + &
deff_nc(ih,jh,na,ijs) * becp1(ik)%nc(jkb,js,ibnd)
END DO
END DO
ELSE
ps1 (ikb, ibnd) = ps1 (ikb, ibnd) + &
deff(ih,jh,na)*becp1(ik)%k(jkb,ibnd)
END IF
do ipol = 1, 3
IF (noncolin) THEN
ijs=0
DO is=1, npol
DO js=1, npol
ijs=ijs+1
ps2_nc(ikb,is,ibnd,ipol) = &
ps2_nc(ikb,is,ibnd,ipol)+ &
deff_nc(ih,jh,na,ijs) * &
alphap(ipol,ik)%nc(jkb,js,ibnd)
END DO
END DO
ELSE
ps2 (ikb, ibnd, ipol) = ps2 (ikb, ibnd, ipol) + &
deff(ih,jh,na) * alphap(ipol,ik)%k(jkb,ibnd)
END IF
IF (okvan) THEN
IF (noncolin) THEN
ijs=0
DO is=1, npol
DO js=1, npol
ijs=ijs+1
ps2_nc (ikb, is, ibnd, ipol) = &
ps2_nc (ikb, is, ibnd, ipol) + &
int1_nc(ih, jh, ipol, na, ijs) * &
becp1(ik)%nc (jkb, js, ibnd)
END DO
END DO
ELSE
ps2 (ikb, ibnd, ipol) = &
ps2 (ikb, ibnd, ipol) + &
int1 (ih, jh, ipol, na, current_spin) * &
becp1(ik)%k (jkb, ibnd)
END IF
END IF
enddo ! ipol
enddo ! jh
enddo ! ih
ijkb0 = ijkb0 + nh (nt)
endif
enddo ! na
enddo ! nt
enddo ! nbnd
!
! Here starts the loop on the atoms (rows)
!
ijkb0 = 0
do nt = 1, ntyp
do na = 1, nat
if (ityp (na) == nt) then
do ipol = 1, 3
mu = 3 * (na - 1) + ipol
do ibnd = startb, lastb
do ih = 1, nh (nt)
ikb = ijkb0 + ih
do iper = 1, nper
nu = nu_i0 + iper
IF (noncolin) THEN
DO is=1, npol
dynwrk (nu, mu) = dynwrk (nu, mu) +2.d0*wk(ikk)* &
(ps2_nc(ikb,is,ibnd,ipol)* &
CONJG(dbecq(iper)%nc(ikb,is,ibnd))+ &
ps1_nc(ikb,is,ibnd)*CONJG( &
dalpq(ipol,iper)%nc(ikb,is,ibnd)) )
END DO
ELSE
dynwrk (nu, mu) = dynwrk (nu, mu) + &
2.d0 * wk (ikk) * (ps2 (ikb, ibnd, ipol) * &
CONJG(dbecq(iper)%k(ikb, ibnd) ) + &
ps1(ikb,ibnd) * CONJG(dalpq(ipol,iper)%k(ikb,ibnd)))
END IF
enddo
enddo
if (okvan) then
ijkb0b = 0
do ntb = 1, ntyp
do nb = 1, nat
if (ityp (nb) == ntb) then
do ih = 1, nh (ntb)
ikb = ijkb0b + ih
IF (noncolin) THEN
ps_nc = (0.d0, 0.d0)
ELSE
ps = (0.d0, 0.d0)
END IF
do jh = 1, nh (ntb)
jkb = ijkb0b + jh
IF (noncolin) THEN
IF (lspinorb) THEN
ijs=0
DO is=1, npol
DO js=1, npol
ijs=ijs+1
ps_nc(is)=ps_nc(is)+ &
int2_so(ih,jh,ipol,na,nb,ijs)*&
becp1(ik)%nc(jkb, js, ibnd)
END DO
END DO
ELSE
DO is=1, npol
ps_nc(is)=ps_nc(is)+ &
int2(ih,jh,ipol,na,nb)*&
becp1(ik)%nc(jkb, is, ibnd)
END DO
END IF
ELSE
ps = ps + int2 (ih, jh, ipol, na, nb) * &
becp1(ik)%k (jkb, ibnd)
ENDIF
enddo
do iper = 1, nper
nu = nu_i0 + iper
IF (noncolin) THEN
DO is=1, npol
dynwrk (nu, mu) = dynwrk (nu, mu) + &
2.d0 * wk (ikk) * ps_nc(is) * &
CONJG(dbecq(iper)%nc(ikb, is, ibnd))
END DO
ELSE
dynwrk (nu, mu) = dynwrk (nu, mu) + &
2.d0 * wk (ikk) * ps * &
CONJG(dbecq(iper)%k(ikb,ibnd) )
END IF
enddo
enddo
ijkb0b = ijkb0b + nh (ntb)
endif
enddo
enddo
endif
enddo
enddo
ijkb0 = ijkb0 + nh (nt)
endif
enddo
enddo
call mp_sum ( dynwrk, intra_bgrp_comm )
wdyn (:,:) = wdyn (:,:) + dynwrk (:,:)
IF (noncolin) THEN
deallocate (ps2_nc)
deallocate (ps1_nc)
deallocate (deff_nc)
ELSE
deallocate (ps2)
deallocate (deff)
END IF
return
end subroutine drhodvnl