quantum-espresso/atomic/examples/paw_examples/reference/Ge.out

225 lines
9.2 KiB
Plaintext

Program LD1 v.4.2CVS starts on 8Feb2010 at 15:38:46
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please acknowledge
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO
Parallel version (MPI), running on 1 processors
--------------------------- All-electron run ----------------------------
Ge
scalar relativistic calculation
atomic number is 32.00
dft =PBE lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1207 r(mesh) = 100.41023 xmin = -7.00 dx = 0.01250
1 Ry = 13.60569193 eV, c = 137.03599966
n l nl e(Ry) e(Ha) e(eV)
1 0 1S 1( 2.00) -805.6314 -402.8157 -10961.1726
2 0 2S 1( 2.00) -100.8250 -50.4125 -1371.7937
2 1 2P 1( 6.00) -88.1036 -44.0518 -1198.7110
3 0 3S 1( 2.00) -12.3838 -6.1919 -168.4908
3 1 3P 1( 6.00) -8.4979 -4.2490 -115.6205
3 2 3D 1(10.00) -2.1543 -1.0772 -29.3109
4 0 4S 1( 2.00) -0.8622 -0.4311 -11.7311
4 1 4P 1( 2.00) -0.2863 -0.1431 -3.8953
eps = 4.7E-15 iter = 37
Etot = -4197.669791 Ry, -2098.834895 Ha, -57112.201999 eV
Ekin = 4273.695292 Ry, 2136.847646 Ha, 58146.581543 eV
Encl = -10116.689310 Ry, -5058.344655 Ha, -137644.558111 eV
Eh = 1804.321691 Ry, 902.160846 Ha, 24549.045072 eV
Exc = -158.997463 Ry, -79.498732 Ha, -2163.270503 eV
normalization and overlap integrals
s(1S/1S) = 1.000000 <r> = 0.0470 <r2> = 0.0030 r(max) = 0.0309
s(1S/2S) = -0.004993
s(1S/3S) = -0.001881
s(1S/4S) = -0.000531
s(2S/2S) = 1.000000 <r> = 0.2100 <r2> = 0.0520 r(max) = 0.1754
s(2S/3S) = -0.001103
s(2S/4S) = -0.000304
s(2P/2P) = 1.000000 <r> = 0.1837 <r2> = 0.0414 r(max) = 0.1418
s(2P/3P) = -0.000884
s(2P/4P) = -0.000179
s(3S/3S) = 1.000000 <r> = 0.6242 <r2> = 0.4495 r(max) = 0.5402
s(3S/4S) = -0.000180
s(3P/3P) = 1.000000 <r> = 0.6470 <r2> = 0.4929 r(max) = 0.5402
s(3P/4P) = -0.000113
s(3D/3D) = 1.000000 <r> = 0.7365 <r2> = 0.6969 r(max) = 0.5012
s(4S/4S) = 1.000000 <r> = 2.1162 <r2> = 5.1841 r(max) = 1.7494
s(4P/4P) = 1.000000 <r> = 2.8993 <r2> = 10.0650 r(max) = 2.2184
------------------------ End of All-electron run ------------------------
--------------------- Generating PAW atomic setup --------------------
Generating local pot.: lloc=2, matching radius rcloc = 2.1500
Computing core charge for nlcc:
r > 1.41 : true rho core
Core charge pseudized with two Bessel functions
Integrated core pseudo-charge : 8.24
Wfc 4S rcut= 1.506 Using Troullier-Martins method
Wfc-us 4S rcutus= 2.361 Estimated cut-off energy= 8.71 Ry
Wfc 4S rcut= 1.506 Using Troullier-Martins method
Wfc-us 4S rcutus= 2.361 Estimated cut-off energy= 16.02 Ry
Wfc 4P rcut= 1.506 Using Troullier-Martins method
Wfc-us 4P rcutus= 2.361 Estimated cut-off energy= 13.55 Ry
Wfc 4P rcut= 1.506 Using Troullier-Martins method
Wfc-us 4P rcutus= 2.361 Estimated cut-off energy= 17.30 Ry
The bmat matrix
2.31682 3.39458 0.00000 0.00000
2.76990 3.94882 0.00000 0.00000
0.00000 0.00000 0.10298 0.36480
0.00000 0.00000 0.25601 0.73807
The bmat + epsilon qq matrix
2.59376 3.05937 0.00000 0.00000
3.05892 3.58972 0.00000 0.00000
0.00000 0.00000 0.11828 0.28037
0.00000 0.00000 0.28019 0.60207
The qq matrix
-0.32119 -0.33521 0.00000 0.00000
-0.33521 -0.35910 0.00000 0.00000
0.00000 0.00000 -0.05346 -0.08443
0.00000 0.00000 -0.08443 -0.13600
multipoles (all-electron charge) - (pseudo charge)
ns l1:ns1 l2 l=0 l=1 l=2 l=3 l=4 l=5
1 0: 1 0 -0.3212
2 0: 1 0 -0.3355
2 0: 2 0 -0.3591
3 1: 1 0 0.0000 0.1534
3 1: 2 0 0.0000 0.1428
3 1: 3 1 -0.0535 0.0000 -0.0994
4 1: 1 0 0.0000 0.2415
4 1: 2 0 0.0000 0.2305
4 1: 3 1 -0.0846 0.0000 -0.1454
4 1: 4 1 -0.1360 0.0000 -0.2165
Required augmentation: BESSEL
Suggested rho cutoff for augmentation: 6.23 Ry
Estimated PAW energy = -163.787333 Ryd
The PAW screened D coefficients
2.59376 3.05919 0.00000 0.00000
3.05919 3.58973 0.00000 0.00000
0.00000 0.00000 0.11828 0.28024
0.00000 0.00000 0.28024 0.60207
The PAW descreened D coefficients (US)
1.53813 1.92216 0.00000 0.00000
1.92216 2.34316 0.00000 0.00000
0.00000 0.00000 0.02823 0.12872
0.00000 0.00000 0.12872 0.34049
------------------- End of pseudopotential generation -------------------
--------------------------- All-electron run ----------------------------
Ge
scalar relativistic calculation
atomic number is 32.00
dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1207 r(mesh) = 100.41023 xmin = -7.00 dx = 0.01250
1 Ry = 13.60569193 eV, c = 137.03599966
n l nl e(Ry) e(Ha) e(eV)
1 0 1S 1( 2.00) -805.6314 -402.8157 -10961.1726
2 0 2S 1( 2.00) -100.8250 -50.4125 -1371.7937
2 1 2P 1( 6.00) -88.1036 -44.0518 -1198.7110
3 0 3S 1( 2.00) -12.3838 -6.1919 -168.4908
3 1 3P 1( 6.00) -8.4979 -4.2490 -115.6205
3 2 3D 1(10.00) -2.1543 -1.0772 -29.3109
4 0 4S 1( 2.00) -0.8622 -0.4311 -11.7311
4 1 4P 1( 2.00) -0.2863 -0.1431 -3.8953
eps = 4.7E-15 iter = 37
Etot = -4197.669791 Ry, -2098.834895 Ha, -57112.201999 eV
Ekin = 4273.695292 Ry, 2136.847646 Ha, 58146.581543 eV
Encl = -10116.689310 Ry, -5058.344655 Ha, -137644.558111 eV
Eh = 1804.321691 Ry, 902.160846 Ha, 24549.045072 eV
Exc = -158.997463 Ry, -79.498732 Ha, -2163.270503 eV
normalization and overlap integrals
s(1S/1S) = 1.000000 <r> = 0.0470 <r2> = 0.0030 r(max) = 0.0309
s(1S/2S) = -0.004993
s(1S/3S) = -0.001881
s(1S/4S) = -0.000531
s(2S/2S) = 1.000000 <r> = 0.2100 <r2> = 0.0520 r(max) = 0.1754
s(2S/3S) = -0.001103
s(2S/4S) = -0.000304
s(2P/2P) = 1.000000 <r> = 0.1837 <r2> = 0.0414 r(max) = 0.1418
s(2P/3P) = -0.000884
s(2P/4P) = -0.000179
s(3S/3S) = 1.000000 <r> = 0.6242 <r2> = 0.4495 r(max) = 0.5402
s(3S/4S) = -0.000180
s(3P/3P) = 1.000000 <r> = 0.6470 <r2> = 0.4929 r(max) = 0.5402
s(3P/4P) = -0.000113
s(3D/3D) = 1.000000 <r> = 0.7365 <r2> = 0.6969 r(max) = 0.5012
s(4S/4S) = 1.000000 <r> = 2.1162 <r2> = 5.1841 r(max) = 1.7494
s(4P/4P) = 1.000000 <r> = 2.8993 <r2> = 10.0650 r(max) = 2.2184
------------------------ End of All-electron run ------------------------
Computing logarithmic derivative in 2.28881
Computing logarithmic derivative in 2.28881
Computing the partial wave expansion
no projector for channel: 2
---------------------- Testing the pseudopotential ----------------------
Ge
scalar relativistic calculation
atomic number is 32.00 valence charge is 4.00
dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1207 r(mesh) = 100.41023 xmin = -7.00 dx = 0.01250
n l nl e AE (Ry) e PS (Ry) De AE-PS (Ry)
1 0 4S 1( 2.00) -0.86222 -0.86222 0.00000
2 1 4P 1( 2.00) -0.28630 -0.28630 0.00000
eps = 9.0E-17 iter = 4
Etot = -4197.669791 Ry, -2098.834895 Ha, -57112.201999 eV
Etotps = -163.787345 Ry, -81.893672 Ha, -2228.440152 eV
Ekin = 15.061015 Ry, 7.530507 Ha, 204.915525 eV
Encl = -25.681669 Ry, -12.840835 Ha, -349.416877 eV
Ehrt = 5.830777 Ry, 2.915389 Ha, 79.331756 eV
Ecxc = -158.997467 Ry, -79.498734 Ha, -2163.270556 eV
(Ecc = -13.355635 Ry, -6.677817 Ha, -181.712649 eV)
---------------------- End of pseudopotential test ----------------------