quantum-espresso/LR_Modules/dgradcorr.f90

239 lines
8.2 KiB
Fortran

!
! Copyright (C) 2001-2016 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------
subroutine dgradcorr (dfft, rho, grho, dvxc_rr, dvxc_sr, dvxc_ss, &
dvxc_s, xq, drho, nspin, nspin0, g, dvxc)
!--------------------------------------------------------------------
!
! Add gradient correction contribution to
! the response exchange-correlation potential dvxc.
! LSDA is allowed. ADC (September 1999)
! Noncollinear is allowed. ADC (June 2007)
!
USE kinds, ONLY : DP
USE noncollin_module, ONLY : noncolin, domag
USE gc_lr, ONLY : gmag, vsgga, segni
USE fft_types, ONLY : fft_type_descriptor
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
INTEGER, INTENT(IN) :: nspin, nspin0
!
REAL(DP), INTENT(IN) ::rho (dfft%nnr, nspin), grho (3, dfft%nnr, nspin0), &
g (3, dfft%ngm), xq(3)
REAL(DP), INTENT(IN) :: &
dvxc_rr(dfft%nnr, nspin0, nspin0), dvxc_sr (dfft%nnr, nspin0, nspin0), &
dvxc_ss (dfft%nnr,nspin0, nspin0), dvxc_s (dfft%nnr, nspin0, nspin0)
COMPLEX(DP), INTENT(IN) :: drho (dfft%nnr, nspin)
COMPLEX(DP), INTENT(INOUT) :: dvxc (dfft%nnr, nspin)
real(DP), parameter :: epsr = 1.0d-6, epsg = 1.0d-10
real(DP) :: grho2, seg, seg0, amag
complex(DP) :: s1, fact, term
complex(DP) :: a (2, 2, 2), b (2, 2, 2, 2), c (2, 2, 2), &
ps (2, 2), ps1 (3, 2, 2), ps2 (3, 2, 2, 2)
complex(DP), allocatable :: gdrho (:,:,:), h (:,:,:), dh (:)
complex(DP), allocatable :: gdmag (:,:,:), dvxcsave(:,:), vgg(:,:)
complex(DP), allocatable :: drhoout(:,:)
integer :: k, ipol, jpol, is, js, ks, ls
IF ( nspin < nspin0 .OR. nspin < 1 .OR. nspin > 4 ) &
CALL errore('dgradcorr', 'incorrect number of spin components',1)
if (noncolin.and.domag) then
allocate (gdmag(3, dfft%nnr, nspin))
allocate (dvxcsave(dfft%nnr, nspin))
allocate (vgg(dfft%nnr, nspin0))
dvxcsave=dvxc
dvxc=(0.0_dp,0.0_dp)
endif
allocate (drhoout( dfft%nnr, nspin0))
allocate (gdrho( 3, dfft%nnr, nspin0))
allocate (h( 3, dfft%nnr, nspin0))
allocate (dh( dfft%nnr))
h (:, :, :) = (0.d0, 0.d0)
if (noncolin.and.domag) then
do is = 1, nspin
call fft_qgradient (dfft, drho(1,is), xq, g, gdmag (1, 1, is) )
enddo
DO is=1,nspin0
IF (is==1) seg0=0.5_dp
IF (is==2) seg0=-0.5_dp
drhoout(:,is) = 0.5_dp*drho(:,1)
DO ipol=1,3
gdrho(ipol,:,is) = 0.5_dp*gdmag(ipol,:,1)
ENDDO
DO k=1,dfft%nnr
seg=seg0*segni(k)
amag=sqrt(rho(k,2)**2+rho(k,3)**2+rho(k,4)**2)
IF (amag>1.d-12) THEN
DO jpol=2,4
drhoout(k,is) = drhoout(k,is)+seg*rho(k,jpol)* &
drho(k,jpol)/amag
END DO
DO ipol=1,3
fact=(0.0_dp,0.0_dp)
DO jpol=2,4
fact=fact+rho(k,jpol)*drho(k,jpol)
END DO
DO jpol=2,4
gdrho(ipol,k,is) = gdrho(ipol,k,is)+ seg*( &
drho(k,jpol)*gmag(ipol,k,jpol)+ &
rho(k,jpol)*gdmag(ipol,k,jpol))/amag &
-seg*(rho(k,jpol)*gmag(ipol,k,jpol)*fact)/amag**3
END DO
END DO
END IF
END DO
END DO
ELSE
!
DO is = 1, nspin0
CALL fft_qgradient (dfft, drho(1,is), xq, g, gdrho (1, 1, is) )
drhoout(:,is)=drho(:,is)
ENDDO
!
ENDIF
do k = 1, dfft%nnr
grho2 = grho(1, k, 1)**2 + grho(2, k, 1)**2 + grho(3, k, 1)**2
if (nspin == 1) then
!
! LDA case
!
if (abs (rho (k, 1) ) > epsr .and. grho2 > epsg) then
s1 = grho (1, k, 1) * gdrho (1, k, 1) + &
grho (2, k, 1) * gdrho (2, k, 1) + &
grho (3, k, 1) * gdrho (3, k, 1)
!
! linear variation of the first term
!
dvxc (k, 1) = dvxc (k, 1) + dvxc_rr (k, 1, 1) * drho (k, 1) &
+ dvxc_sr (k, 1, 1) * s1
do ipol = 1, 3
h (ipol, k, 1) = (dvxc_sr(k, 1, 1) * drho(k, 1) + &
dvxc_ss(k, 1, 1) * s1 )*grho(ipol, k, 1) + &
dvxc_s (k, 1, 1) * gdrho (ipol, k, 1)
enddo
else
do ipol = 1, 3
h (ipol, k, 1) = (0.d0, 0.d0)
enddo
endif
else
!
! LSDA case
!
ps (:,:) = (0.d0, 0.d0)
do is = 1, nspin0
do js = 1, nspin0
do ipol = 1, 3
ps1(ipol, is, js) = drhoout (k, is) * grho (ipol, k, js)
ps(is, js) = ps(is, js) + grho(ipol,k,is)*gdrho(ipol,k,js)
enddo
do ks = 1, nspin0
if (is == js .and. js == ks) then
a (is, js, ks) = dvxc_sr (k, is, is)
c (is, js, ks) = dvxc_sr (k, is, is)
else
if (is == 1) then
a (is, js, ks) = dvxc_sr (k, 1, 2)
else
a (is, js, ks) = dvxc_sr (k, 2, 1)
endif
if (js == 1) then
c (is, js, ks) = dvxc_sr (k, 1, 2)
else
c (is, js, ks) = dvxc_sr (k, 2, 1)
endif
endif
do ipol = 1, 3
ps2 (ipol, is, js, ks) = ps (is, js) * grho (ipol, k, ks)
enddo
do ls = 1, nspin0
if (is == js .and. js == ks .and. ks == ls) then
b (is, js, ks, ls) = dvxc_ss (k, is, is)
else
if (is == 1) then
b (is, js, ks, ls) = dvxc_ss (k, 1, 2)
else
b (is, js, ks, ls) = dvxc_ss (k, 2, 1)
endif
endif
enddo
enddo
enddo
enddo
do is = 1, nspin0
do js = 1, nspin0
dvxc (k, is) = dvxc (k, is) + dvxc_rr (k,is,js)*drhoout(k, js)
do ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
dvxc_s (k, is, js) * gdrho(ipol, k, js)
enddo
do ks = 1, nspin0
dvxc (k, is) = dvxc (k, is) + a (is, js, ks) * ps (js, ks)
do ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
c (is, js, ks) * ps1 (ipol, js, ks)
enddo
do ls = 1, nspin0
do ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
b (is, js, ks, ls) * ps2 (ipol, js, ks, ls)
enddo
enddo
enddo
enddo
enddo
endif
enddo
! linear variation of the second term
do is = 1, nspin0
call fft_qgraddot (dfft, h (1, 1, is), xq, g, dh)
do k = 1, dfft%nnr
dvxc (k, is) = dvxc (k, is) - dh (k)
enddo
enddo
IF (noncolin.AND.domag) THEN
DO is=1,nspin0
vgg(:,is)=dvxc(:,is)
ENDDO
dvxc=dvxcsave
DO k=1,dfft%nnr
dvxc(k,1)=dvxc(k,1)+0.5d0*(vgg(k,1)+vgg(k,2))
amag=sqrt(rho(k,2)**2+rho(k,3)**2+rho(k,4)**2)
IF (amag.GT.1.d-12) THEN
DO is=2,4
term=(0.0_dp,0.0_dp)
DO jpol=2,4
term=term+rho(k,jpol)*drho(k,jpol)
ENDDO
term=term*rho(k,is)/amag**2
dvxc(k,is)=dvxc(k,is)+0.5d0*segni(k)*((vgg(k,1)-vgg(k,2)) &
*rho(k,is)+vsgga(k)*(drho(k,is)-term))/amag
ENDDO
ENDIF
ENDDO
ENDIF
deallocate (dh)
deallocate (h)
deallocate (gdrho)
deallocate (drhoout)
if (noncolin.and.domag) then
deallocate (gdmag)
deallocate (dvxcsave)
deallocate (vgg)
endif
return
end subroutine dgradcorr