quantum-espresso/test-suite/ph_interpol_metal/benchmark.out.git.inp=al.el...

3251 lines
119 KiB
Plaintext

Program PHONON v.6.5 starts on 21Mar2020 at 18:41:28
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
MPI processes distributed on 1 nodes
Fft bands division: nmany = 1
Dynamical matrices for q-points given in input
( 10q-points):
N xq(1) xq(2) xq(3)
1 0.000000000 0.000000000 0.000000000
2 0.250000000 0.000000000 0.000000000
3 0.500000000 0.000000000 0.000000000
4 1.000000000 0.000000000 0.000000000
5 0.750000000 0.250000000 0.250000000
6 0.500000000 0.500000000 0.500000000
7 0.250000000 0.250000000 0.250000000
8 0.000000000 0.000000000 0.000000000
9 0.250000000 0.250000000 0.000000000
10 0.500000000 0.500000000 0.000000000
Reading xml data from directory:
./aluminum.save/
Message from routine qexsd_readschema :
input info not found or not readable in xml file
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 43 869 869 181
Reading collected, re-writing distributed wavefunctions
Calculation of q = 0.0000000 0.0000000 0.0000000
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.0000000 0.0000000 0.0000000 )
49 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, O_h (m-3m) point group:
Atomic displacements:
There are 1 irreducible representations
Representation 1 3 modes -T_1u G_15 G_4- To be done
Alpha used in Ewald sum = 0.7000
PHONON : 0.17s CPU 0.17s WALL
Representation # 1 modes # 1 2 3
Self-consistent Calculation
Pert. # 1: Fermi energy shift (Ry) = -1.6501E-24 -6.2693E-38
Pert. # 2: Fermi energy shift (Ry) = -4.3190E-25 -4.3885E-37
Pert. # 3: Fermi energy shift (Ry) = 1.8849E-25 0.0000E+00
iter # 1 total cpu time : 0.4 secs av.it.: 3.2
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.431E-08
Pert. # 1: Fermi energy shift (Ry) = -4.0497E-25 7.3468E-40
Pert. # 2: Fermi energy shift (Ry) = 7.6687E-25 -9.7958E-40
Pert. # 3: Fermi energy shift (Ry) = -4.8898E-25 1.2321E-39
iter # 2 total cpu time : 0.6 secs av.it.: 5.4
thresh= 1.196E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.497E-09
Pert. # 1: Fermi energy shift (Ry) = 1.3959E-24 -2.4489E-40
Pert. # 2: Fermi energy shift (Ry) = -3.0158E-25 -1.1020E-39
Pert. # 3: Fermi energy shift (Ry) = -1.6150E-24 -1.0331E-39
iter # 3 total cpu time : 0.8 secs av.it.: 5.0
thresh= 3.869E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.706E-13
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Diagonalizing the dynamical matrix
q = ( 0.000000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 0.171313 [THz] = 5.714400 [cm-1]
freq ( 2) = 0.171313 [THz] = 5.714400 [cm-1]
freq ( 3) = 0.171313 [THz] = 5.714400 [cm-1]
**************************************************************************
Mode symmetry, O_h (m-3m) point group:
freq ( 1 - 3) = 5.7 [cm-1] --> T_1u G_15 G_4- I
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675809 states/spin/Ry/Unit Cell at Ef= 8.278667 eV
double delta at Ef =104.058639
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0000 gamma= 0.00 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703387 states/spin/Ry/Unit Cell at Ef= 8.200081 eV
double delta at Ef = 56.350968
lambda( 1)= 0.0000 gamma= 0.32 GHz
lambda( 2)= 0.0000 gamma= 0.32 GHz
lambda( 3)= 0.0000 gamma= 0.32 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781691 states/spin/Ry/Unit Cell at Ef= 8.182007 eV
double delta at Ef = 42.846273
lambda( 1)= 0.0000 gamma= 1.23 GHz
lambda( 2)= 0.0000 gamma= 1.23 GHz
lambda( 3)= 0.0000 gamma= 1.23 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793236 states/spin/Ry/Unit Cell at Ef= 8.205919 eV
double delta at Ef = 36.753070
lambda( 1)= 0.0000 gamma= 2.20 GHz
lambda( 2)= 0.0000 gamma= 2.20 GHz
lambda( 3)= 0.0000 gamma= 2.20 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781098 states/spin/Ry/Unit Cell at Ef= 8.232637 eV
double delta at Ef = 32.865698
lambda( 1)= 0.0000 gamma= 2.67 GHz
lambda( 2)= 0.0000 gamma= 2.67 GHz
lambda( 3)= 0.0000 gamma= 2.67 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753458 states/spin/Ry/Unit Cell at Ef= 8.253288 eV
double delta at Ef = 29.857717
lambda( 1)= 0.0000 gamma= 2.80 GHz
lambda( 2)= 0.0000 gamma= 2.80 GHz
lambda( 3)= 0.0000 gamma= 2.80 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267116 eV
double delta at Ef = 27.504731
lambda( 1)= 0.0000 gamma= 2.87 GHz
lambda( 2)= 0.0000 gamma= 2.87 GHz
lambda( 3)= 0.0000 gamma= 2.87 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693265 states/spin/Ry/Unit Cell at Ef= 8.275899 eV
double delta at Ef = 25.729529
lambda( 1)= 0.0000 gamma= 2.95 GHz
lambda( 2)= 0.0000 gamma= 2.95 GHz
lambda( 3)= 0.0000 gamma= 2.95 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281626 eV
double delta at Ef = 24.395225
lambda( 1)= 0.0000 gamma= 3.04 GHz
lambda( 2)= 0.0000 gamma= 3.04 GHz
lambda( 3)= 0.0000 gamma= 3.04 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285693 eV
double delta at Ef = 23.360121
lambda( 1)= 0.0000 gamma= 3.12 GHz
lambda( 2)= 0.0000 gamma= 3.12 GHz
lambda( 3)= 0.0000 gamma= 3.12 GHz
Calculation of q = 0.2500000 0.0000000 0.0000000
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.51 MB
The potential is recalculated from file :
./_ph0/aluminum.q_2/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.3
total cpu time spent up to now is 2.1 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_2/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.2500000 0.0000000 0.0000000 )
8 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_4v (4mm) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_1 G_1 D_1 To be done
Representation 2 2 modes -E G_5 D_5 To be done
Alpha used in Ewald sum = 0.7000
PHONON : 2.93s CPU 3.05s WALL
Representation # 1 mode # 1
Self-consistent Calculation
iter # 1 total cpu time : 3.3 secs av.it.: 4.0
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 7.010E-01
iter # 2 total cpu time : 3.5 secs av.it.: 5.3
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 2.853E+02
iter # 3 total cpu time : 3.6 secs av.it.: 5.3
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.183E-03
iter # 4 total cpu time : 3.8 secs av.it.: 2.3
thresh= 3.439E-03 alpha_mix = 0.700 |ddv_scf|^2 = 1.837E-09
iter # 5 total cpu time : 4.0 secs av.it.: 6.0
thresh= 4.286E-06 alpha_mix = 0.700 |ddv_scf|^2 = 9.129E-10
iter # 6 total cpu time : 4.1 secs av.it.: 4.6
thresh= 3.021E-06 alpha_mix = 0.700 |ddv_scf|^2 = 4.185E-08
iter # 7 total cpu time : 4.3 secs av.it.: 2.2
thresh= 2.046E-05 alpha_mix = 0.700 |ddv_scf|^2 = 7.982E-11
End of self-consistent calculation
Convergence has been achieved
Representation # 2 modes # 2 3
Self-consistent Calculation
iter # 1 total cpu time : 4.7 secs av.it.: 3.3
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 4.277E-08
iter # 2 total cpu time : 5.1 secs av.it.: 5.7
thresh= 2.068E-05 alpha_mix = 0.700 |ddv_scf|^2 = 3.544E-09
iter # 3 total cpu time : 5.4 secs av.it.: 5.5
thresh= 5.953E-06 alpha_mix = 0.700 |ddv_scf|^2 = 2.872E-11
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 6
List of q in the star:
1 0.250000000 0.000000000 0.000000000
2 -0.250000000 0.000000000 0.000000000
3 0.000000000 0.000000000 -0.250000000
4 0.000000000 -0.250000000 0.000000000
5 0.000000000 0.250000000 0.000000000
6 0.000000000 0.000000000 0.250000000
Diagonalizing the dynamical matrix
q = ( 0.250000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 2.295452 [THz] = 76.568020 [cm-1]
freq ( 2) = 2.295452 [THz] = 76.568020 [cm-1]
freq ( 3) = 4.006882 [THz] = 133.655203 [cm-1]
**************************************************************************
Mode symmetry, C_4v (4mm) point group:
freq ( 1 - 2) = 76.6 [cm-1] --> E G_5 D_5
freq ( 3 - 3) = 133.7 [cm-1] --> A_1 G_1 D_1
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 20.425507
lambda( 1)= 0.1975 gamma= 2.66 GHz
lambda( 2)= 0.1975 gamma= 2.66 GHz
lambda( 3)= 0.0373 gamma= 1.53 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 19.334701
lambda( 1)= 0.4708 gamma= 6.40 GHz
lambda( 2)= 0.4708 gamma= 6.40 GHz
lambda( 3)= 0.2058 gamma= 8.53 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 19.823356
lambda( 1)= 0.3166 gamma= 4.43 GHz
lambda( 2)= 0.3166 gamma= 4.43 GHz
lambda( 3)= 0.3642 gamma= 15.53 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 19.866604
lambda( 1)= 0.2715 gamma= 3.82 GHz
lambda( 2)= 0.2715 gamma= 3.82 GHz
lambda( 3)= 0.4128 gamma= 17.68 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 20.003856
lambda( 1)= 0.2774 gamma= 3.88 GHz
lambda( 2)= 0.2774 gamma= 3.88 GHz
lambda( 3)= 0.4258 gamma= 18.16 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 20.043744
lambda( 1)= 0.2937 gamma= 4.07 GHz
lambda( 2)= 0.2937 gamma= 4.07 GHz
lambda( 3)= 0.4279 gamma= 18.06 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 19.991055
lambda( 1)= 0.3085 gamma= 4.22 GHz
lambda( 2)= 0.3085 gamma= 4.22 GHz
lambda( 3)= 0.4267 gamma= 17.79 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 19.897014
lambda( 1)= 0.3194 gamma= 4.33 GHz
lambda( 2)= 0.3194 gamma= 4.33 GHz
lambda( 3)= 0.4234 gamma= 17.48 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 19.776351
lambda( 1)= 0.3266 gamma= 4.40 GHz
lambda( 2)= 0.3266 gamma= 4.40 GHz
lambda( 3)= 0.4178 gamma= 17.16 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 19.625993
lambda( 1)= 0.3311 gamma= 4.46 GHz
lambda( 2)= 0.3311 gamma= 4.46 GHz
lambda( 3)= 0.4100 gamma= 16.81 GHz
Calculation of q = 0.5000000 0.0000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_3/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.3
total cpu time spent up to now is 4.1 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_3/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.5000000 0.0000000 0.0000000 )
8 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_4v (4mm) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_1 G_1 D_1 To be done
Representation 2 2 modes -E G_5 D_5 To be done
Alpha used in Ewald sum = 0.7000
PHONON : 7.31s CPU 7.66s WALL
Representation # 1 mode # 1
Self-consistent Calculation
iter # 1 total cpu time : 7.9 secs av.it.: 3.9
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 9.527E-03
iter # 2 total cpu time : 8.0 secs av.it.: 4.5
thresh= 9.761E-03 alpha_mix = 0.700 |ddv_scf|^2 = 2.274E-01
iter # 3 total cpu time : 8.2 secs av.it.: 4.4
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 6.443E-08
iter # 4 total cpu time : 8.4 secs av.it.: 5.5
thresh= 2.538E-05 alpha_mix = 0.700 |ddv_scf|^2 = 3.166E-09
iter # 5 total cpu time : 8.6 secs av.it.: 4.8
thresh= 5.626E-06 alpha_mix = 0.700 |ddv_scf|^2 = 3.156E-10
iter # 6 total cpu time : 8.7 secs av.it.: 4.2
thresh= 1.777E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.171E-11
End of self-consistent calculation
Convergence has been achieved
Representation # 2 modes # 2 3
Self-consistent Calculation
iter # 1 total cpu time : 9.2 secs av.it.: 3.4
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.015E-07
iter # 2 total cpu time : 9.6 secs av.it.: 5.9
thresh= 3.187E-05 alpha_mix = 0.700 |ddv_scf|^2 = 3.560E-09
iter # 3 total cpu time : 9.9 secs av.it.: 5.4
thresh= 5.967E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.982E-10
iter # 4 total cpu time : 10.3 secs av.it.: 5.3
thresh= 1.408E-06 alpha_mix = 0.700 |ddv_scf|^2 = 2.046E-14
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 6
List of q in the star:
1 0.500000000 0.000000000 0.000000000
2 -0.500000000 0.000000000 0.000000000
3 0.000000000 0.000000000 -0.500000000
4 0.000000000 -0.500000000 0.000000000
5 0.000000000 0.500000000 0.000000000
6 0.000000000 0.000000000 0.500000000
Diagonalizing the dynamical matrix
q = ( 0.500000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 4.200411 [THz] = 140.110636 [cm-1]
freq ( 2) = 4.200411 [THz] = 140.110636 [cm-1]
freq ( 3) = 6.475305 [THz] = 215.992926 [cm-1]
**************************************************************************
Mode symmetry, C_4v (4mm) point group:
freq ( 1 - 2) = 140.1 [cm-1] --> E G_5 D_5
freq ( 3 - 3) = 216.0 [cm-1] --> A_1 G_1 D_1
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 1.280706
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0604 gamma= 6.47 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 7.961468
lambda( 1)= 0.0343 gamma= 1.56 GHz
lambda( 2)= 0.0343 gamma= 1.56 GHz
lambda( 3)= 0.2664 gamma= 28.84 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 13.294748
lambda( 1)= 0.0982 gamma= 4.60 GHz
lambda( 2)= 0.0982 gamma= 4.60 GHz
lambda( 3)= 0.2857 gamma= 31.82 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 15.274766
lambda( 1)= 0.1288 gamma= 6.06 GHz
lambda( 2)= 0.1288 gamma= 6.06 GHz
lambda( 3)= 0.2804 gamma= 31.37 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 16.049476
lambda( 1)= 0.1456 gamma= 6.82 GHz
lambda( 2)= 0.1456 gamma= 6.82 GHz
lambda( 3)= 0.2754 gamma= 30.66 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 16.311098
lambda( 1)= 0.1546 gamma= 7.17 GHz
lambda( 2)= 0.1546 gamma= 7.17 GHz
lambda( 3)= 0.2715 gamma= 29.93 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 16.374728
lambda( 1)= 0.1593 gamma= 7.30 GHz
lambda( 2)= 0.1593 gamma= 7.30 GHz
lambda( 3)= 0.2707 gamma= 29.48 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 16.366754
lambda( 1)= 0.1615 gamma= 7.33 GHz
lambda( 2)= 0.1615 gamma= 7.33 GHz
lambda( 3)= 0.2718 gamma= 29.31 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 16.332596
lambda( 1)= 0.1623 gamma= 7.32 GHz
lambda( 2)= 0.1623 gamma= 7.32 GHz
lambda( 3)= 0.2731 gamma= 29.29 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 16.288343
lambda( 1)= 0.1623 gamma= 7.31 GHz
lambda( 2)= 0.1623 gamma= 7.31 GHz
lambda( 3)= 0.2738 gamma= 29.31 GHz
Calculation of q = 1.0000000 0.0000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 331
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 118 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_4/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.1
total cpu time spent up to now is 5.2 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_4/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 1.0000000 0.0000000 0.0000000 )
17 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 118 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Atomic displacements:
There are 2 irreducible representations
Representation 1 2 modes - To be done
Representation 2 1 modes - To be done
Alpha used in Ewald sum = 0.7000
PHONON : 11.09s CPU 11.68s WALL
Representation # 1 modes # 1 2
Self-consistent Calculation
iter # 1 total cpu time : 11.9 secs av.it.: 3.4
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 3.159E-07
iter # 2 total cpu time : 12.1 secs av.it.: 5.8
thresh= 5.620E-05 alpha_mix = 0.700 |ddv_scf|^2 = 4.457E-09
iter # 3 total cpu time : 12.3 secs av.it.: 5.5
thresh= 6.676E-06 alpha_mix = 0.700 |ddv_scf|^2 = 4.210E-10
iter # 4 total cpu time : 12.5 secs av.it.: 5.3
thresh= 2.052E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.870E-14
End of self-consistent calculation
Convergence has been achieved
Representation # 2 mode # 3
Self-consistent Calculation
iter # 1 total cpu time : 12.8 secs av.it.: 3.8
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 6.930E-05
iter # 2 total cpu time : 12.9 secs av.it.: 5.1
thresh= 8.324E-04 alpha_mix = 0.700 |ddv_scf|^2 = 2.668E-05
iter # 3 total cpu time : 13.0 secs av.it.: 4.9
thresh= 5.165E-04 alpha_mix = 0.700 |ddv_scf|^2 = 5.195E-09
iter # 4 total cpu time : 13.1 secs av.it.: 5.0
thresh= 7.207E-06 alpha_mix = 0.700 |ddv_scf|^2 = 2.885E-11
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 3
List of q in the star:
1 1.000000000 0.000000000 0.000000000
2 0.000000000 0.000000000 1.000000000
3 0.000000000 1.000000000 0.000000000
Diagonalizing the dynamical matrix
q = ( 1.000000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 6.062766 [THz] = 202.232094 [cm-1]
freq ( 2) = 6.062766 [THz] = 202.232094 [cm-1]
freq ( 3) = 9.881199 [THz] = 329.601337 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 34.425003
lambda( 1)= 0.3803 gamma= 35.72 GHz
lambda( 2)= 0.3803 gamma= 35.72 GHz
lambda( 3)= 0.0608 gamma= 15.17 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 18.410086
lambda( 1)= 0.1771 gamma= 16.81 GHz
lambda( 2)= 0.1771 gamma= 16.81 GHz
lambda( 3)= 0.2112 gamma= 53.23 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 14.910232
lambda( 1)= 0.1471 gamma= 14.36 GHz
lambda( 2)= 0.1471 gamma= 14.36 GHz
lambda( 3)= 0.1428 gamma= 37.03 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 13.194919
lambda( 1)= 0.1253 gamma= 12.28 GHz
lambda( 2)= 0.1253 gamma= 12.28 GHz
lambda( 3)= 0.1245 gamma= 32.43 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 12.449424
lambda( 1)= 0.1112 gamma= 10.86 GHz
lambda( 2)= 0.1112 gamma= 10.86 GHz
lambda( 3)= 0.1311 gamma= 34.00 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 12.239855
lambda( 1)= 0.1045 gamma= 10.10 GHz
lambda( 2)= 0.1045 gamma= 10.10 GHz
lambda( 3)= 0.1424 gamma= 36.56 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 12.291335
lambda( 1)= 0.1025 gamma= 9.79 GHz
lambda( 2)= 0.1025 gamma= 9.79 GHz
lambda( 3)= 0.1526 gamma= 38.69 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 12.455519
lambda( 1)= 0.1027 gamma= 9.71 GHz
lambda( 2)= 0.1027 gamma= 9.71 GHz
lambda( 3)= 0.1602 gamma= 40.24 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 12.650123
lambda( 1)= 0.1034 gamma= 9.72 GHz
lambda( 2)= 0.1034 gamma= 9.72 GHz
lambda( 3)= 0.1656 gamma= 41.35 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 12.838575
lambda( 1)= 0.1041 gamma= 9.78 GHz
lambda( 2)= 0.1041 gamma= 9.78 GHz
lambda( 3)= 0.1691 gamma= 42.15 GHz
Calculation of q = 0.7500000 0.2500000 0.2500000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 331
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 576 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_5/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.5
total cpu time spent up to now is 10.8 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_5/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.7500000 0.2500000 0.2500000 )
2 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 576 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_s (m) point group:
Atomic displacements:
There are 3 irreducible representations
Representation 1 1 modes -A' To be done
Representation 2 1 modes -A' To be done
Representation 3 1 modes -A'' To be done
Alpha used in Ewald sum = 0.7000
PHONON : 18.00s CPU 18.90s WALL
Representation # 1 mode # 1
Self-consistent Calculation
iter # 1 total cpu time : 19.5 secs av.it.: 3.8
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.088E-05
iter # 2 total cpu time : 20.0 secs av.it.: 5.7
thresh= 3.298E-04 alpha_mix = 0.700 |ddv_scf|^2 = 4.139E-06
iter # 3 total cpu time : 20.5 secs av.it.: 5.4
thresh= 2.035E-04 alpha_mix = 0.700 |ddv_scf|^2 = 4.193E-07
iter # 4 total cpu time : 21.0 secs av.it.: 5.1
thresh= 6.476E-05 alpha_mix = 0.700 |ddv_scf|^2 = 3.136E-09
iter # 5 total cpu time : 21.5 secs av.it.: 5.6
thresh= 5.600E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.344E-10
iter # 6 total cpu time : 22.1 secs av.it.: 5.5
thresh= 1.159E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.098E-13
End of self-consistent calculation
Convergence has been achieved
Representation # 2 mode # 2
Self-consistent Calculation
iter # 1 total cpu time : 23.0 secs av.it.: 4.1
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 2.041E-04
iter # 2 total cpu time : 23.5 secs av.it.: 5.4
thresh= 1.428E-03 alpha_mix = 0.700 |ddv_scf|^2 = 3.004E-04
iter # 3 total cpu time : 24.0 secs av.it.: 4.7
thresh= 1.733E-03 alpha_mix = 0.700 |ddv_scf|^2 = 2.042E-07
iter # 4 total cpu time : 24.6 secs av.it.: 5.5
thresh= 4.518E-05 alpha_mix = 0.700 |ddv_scf|^2 = 2.751E-09
iter # 5 total cpu time : 25.1 secs av.it.: 5.5
thresh= 5.245E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.432E-10
iter # 6 total cpu time : 25.6 secs av.it.: 5.5
thresh= 1.197E-06 alpha_mix = 0.700 |ddv_scf|^2 = 4.526E-13
End of self-consistent calculation
Convergence has been achieved
Representation # 3 mode # 3
Self-consistent Calculation
iter # 1 total cpu time : 26.5 secs av.it.: 3.3
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 5.549E-07
iter # 2 total cpu time : 27.1 secs av.it.: 5.4
thresh= 7.449E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.395E-08
iter # 3 total cpu time : 27.5 secs av.it.: 4.8
thresh= 1.181E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.064E-09
iter # 4 total cpu time : 28.0 secs av.it.: 4.9
thresh= 3.262E-06 alpha_mix = 0.700 |ddv_scf|^2 = 9.533E-14
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 24
List of q in the star:
1 0.750000000 0.250000000 0.250000000
2 0.750000000 0.250000000 -0.250000000
3 0.750000000 -0.250000000 0.250000000
4 0.750000000 -0.250000000 -0.250000000
5 -0.750000000 -0.250000000 -0.250000000
6 -0.750000000 0.250000000 0.250000000
7 -0.750000000 -0.250000000 0.250000000
8 -0.750000000 0.250000000 -0.250000000
9 0.250000000 0.250000000 0.750000000
10 -0.250000000 0.250000000 -0.750000000
11 0.250000000 -0.250000000 -0.750000000
12 -0.250000000 -0.250000000 0.750000000
13 0.250000000 0.750000000 0.250000000
14 0.250000000 -0.750000000 -0.250000000
15 -0.250000000 -0.750000000 0.250000000
16 -0.250000000 0.750000000 -0.250000000
17 0.250000000 -0.250000000 0.750000000
18 -0.250000000 -0.750000000 -0.250000000
19 -0.250000000 -0.250000000 -0.750000000
20 0.250000000 -0.750000000 0.250000000
21 -0.250000000 0.750000000 0.250000000
22 0.250000000 0.250000000 -0.750000000
23 -0.250000000 0.250000000 0.750000000
24 0.250000000 0.750000000 -0.250000000
Diagonalizing the dynamical matrix
q = ( 0.750000000 0.250000000 0.250000000 )
**************************************************************************
freq ( 1) = 5.392360 [THz] = 179.869757 [cm-1]
freq ( 2) = 6.716390 [THz] = 224.034650 [cm-1]
freq ( 3) = 8.785621 [THz] = 293.056788 [cm-1]
**************************************************************************
Mode symmetry, C_s (m) point group:
freq ( 1 - 1) = 179.9 [cm-1] --> A''
freq ( 2 - 2) = 224.0 [cm-1] --> A'
freq ( 3 - 3) = 293.1 [cm-1] --> A'
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 16.984783
lambda( 1)= 0.1107 gamma= 8.22 GHz
lambda( 2)= 0.1601 gamma= 18.46 GHz
lambda( 3)= 0.3820 gamma= 75.34 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 12.925455
lambda( 1)= 0.0786 gamma= 5.90 GHz
lambda( 2)= 0.1035 gamma= 12.05 GHz
lambda( 3)= 0.2317 gamma= 46.18 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 14.131085
lambda( 1)= 0.0871 gamma= 6.73 GHz
lambda( 2)= 0.1095 gamma= 13.12 GHz
lambda( 3)= 0.2362 gamma= 48.43 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 14.167432
lambda( 1)= 0.0875 gamma= 6.79 GHz
lambda( 2)= 0.1060 gamma= 12.75 GHz
lambda( 3)= 0.2233 gamma= 45.98 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 13.955867
lambda( 1)= 0.0868 gamma= 6.70 GHz
lambda( 2)= 0.1034 gamma= 12.39 GHz
lambda( 3)= 0.2093 gamma= 42.91 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 13.769271
lambda( 1)= 0.0868 gamma= 6.64 GHz
lambda( 2)= 0.1034 gamma= 12.26 GHz
lambda( 3)= 0.2013 gamma= 40.86 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 13.674406
lambda( 1)= 0.0876 gamma= 6.62 GHz
lambda( 2)= 0.1050 gamma= 12.30 GHz
lambda( 3)= 0.1983 gamma= 39.75 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 13.661793
lambda( 1)= 0.0888 gamma= 6.64 GHz
lambda( 2)= 0.1070 gamma= 12.42 GHz
lambda( 3)= 0.1974 gamma= 39.18 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 13.697478
lambda( 1)= 0.0899 gamma= 6.69 GHz
lambda( 2)= 0.1089 gamma= 12.57 GHz
lambda( 3)= 0.1967 gamma= 38.84 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 13.753491
lambda( 1)= 0.0909 gamma= 6.75 GHz
lambda( 2)= 0.1104 gamma= 12.72 GHz
lambda( 3)= 0.1958 gamma= 38.59 GHz
Calculation of q = 0.5000000 0.5000000 0.5000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 307
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 130 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_6/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.8
total cpu time spent up to now is 12.2 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_6/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.5000000 0.5000000 0.5000000 )
13 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 130 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Atomic displacements:
There are 2 irreducible representations
Representation 1 2 modes - To be done
Representation 2 1 modes - To be done
Alpha used in Ewald sum = 0.7000
PHONON : 28.23s CPU 29.76s WALL
Representation # 1 modes # 1 2
Self-consistent Calculation
iter # 1 total cpu time : 30.0 secs av.it.: 3.4
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 4.102E-08
iter # 2 total cpu time : 30.2 secs av.it.: 5.9
thresh= 2.025E-05 alpha_mix = 0.700 |ddv_scf|^2 = 3.605E-09
iter # 3 total cpu time : 30.5 secs av.it.: 5.6
thresh= 6.004E-06 alpha_mix = 0.700 |ddv_scf|^2 = 2.029E-11
End of self-consistent calculation
Convergence has been achieved
Representation # 2 mode # 3
Self-consistent Calculation
iter # 1 total cpu time : 30.7 secs av.it.: 4.4
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 2.724E-04
iter # 2 total cpu time : 30.9 secs av.it.: 5.5
thresh= 1.650E-03 alpha_mix = 0.700 |ddv_scf|^2 = 3.200E-04
iter # 3 total cpu time : 31.0 secs av.it.: 4.9
thresh= 1.789E-03 alpha_mix = 0.700 |ddv_scf|^2 = 7.196E-09
iter # 4 total cpu time : 31.1 secs av.it.: 5.5
thresh= 8.483E-06 alpha_mix = 0.700 |ddv_scf|^2 = 3.354E-10
iter # 5 total cpu time : 31.2 secs av.it.: 5.1
thresh= 1.831E-06 alpha_mix = 0.700 |ddv_scf|^2 = 7.888E-14
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 4
List of q in the star:
1 0.500000000 0.500000000 0.500000000
2 -0.500000000 0.500000000 -0.500000000
3 -0.500000000 0.500000000 0.500000000
4 -0.500000000 -0.500000000 0.500000000
Diagonalizing the dynamical matrix
q = ( 0.500000000 0.500000000 0.500000000 )
**************************************************************************
freq ( 1) = 4.438910 [THz] = 148.066107 [cm-1]
freq ( 2) = 4.438910 [THz] = 148.066107 [cm-1]
freq ( 3) = 9.422633 [THz] = 314.305204 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 1.718168
lambda( 1)= 0.0073 gamma= 0.37 GHz
lambda( 2)= 0.0073 gamma= 0.37 GHz
lambda( 3)= 0.0310 gamma= 7.03 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 10.177916
lambda( 1)= 0.0534 gamma= 2.72 GHz
lambda( 2)= 0.0534 gamma= 2.72 GHz
lambda( 3)= 0.1394 gamma= 31.95 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 14.089272
lambda( 1)= 0.0798 gamma= 4.18 GHz
lambda( 2)= 0.0798 gamma= 4.18 GHz
lambda( 3)= 0.1486 gamma= 35.05 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 14.850423
lambda( 1)= 0.0809 gamma= 4.25 GHz
lambda( 2)= 0.0809 gamma= 4.25 GHz
lambda( 3)= 0.1601 gamma= 37.91 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 14.792267
lambda( 1)= 0.0778 gamma= 4.07 GHz
lambda( 2)= 0.0778 gamma= 4.07 GHz
lambda( 3)= 0.1701 gamma= 40.11 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 14.545807
lambda( 1)= 0.0757 gamma= 3.92 GHz
lambda( 2)= 0.0757 gamma= 3.92 GHz
lambda( 3)= 0.1788 gamma= 41.74 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 14.356743
lambda( 1)= 0.0747 gamma= 3.82 GHz
lambda( 2)= 0.0747 gamma= 3.82 GHz
lambda( 3)= 0.1878 gamma= 43.30 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 14.259440
lambda( 1)= 0.0742 gamma= 3.76 GHz
lambda( 2)= 0.0742 gamma= 3.76 GHz
lambda( 3)= 0.1958 gamma= 44.72 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 14.224739
lambda( 1)= 0.0738 gamma= 3.72 GHz
lambda( 2)= 0.0738 gamma= 3.72 GHz
lambda( 3)= 0.2018 gamma= 45.84 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 14.224196
lambda( 1)= 0.0735 gamma= 3.70 GHz
lambda( 2)= 0.0735 gamma= 3.70 GHz
lambda( 3)= 0.2058 gamma= 46.65 GHz
Calculation of q = 0.2500000 0.2500000 0.2500000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 240 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_7/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.8
total cpu time spent up to now is 14.6 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_7/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.2500000 0.2500000 0.2500000 )
6 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 240 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_3v (3m) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_1 L_1 To be done
Representation 2 2 modes -E L_3 To be done
Alpha used in Ewald sum = 0.7000
PHONON : 32.03s CPU 33.77s WALL
Representation # 1 mode # 1
Self-consistent Calculation
iter # 1 total cpu time : 34.0 secs av.it.: 4.2
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 2.383E-02
iter # 2 total cpu time : 34.2 secs av.it.: 4.9
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.036E+00
iter # 3 total cpu time : 34.4 secs av.it.: 4.7
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 5.855E-07
iter # 4 total cpu time : 34.6 secs av.it.: 5.2
thresh= 7.652E-05 alpha_mix = 0.700 |ddv_scf|^2 = 4.580E-09
iter # 5 total cpu time : 34.8 secs av.it.: 5.4
thresh= 6.768E-06 alpha_mix = 0.700 |ddv_scf|^2 = 6.324E-08
iter # 6 total cpu time : 35.0 secs av.it.: 3.4
thresh= 2.515E-05 alpha_mix = 0.700 |ddv_scf|^2 = 7.435E-10
iter # 7 total cpu time : 35.2 secs av.it.: 4.8
thresh= 2.727E-06 alpha_mix = 0.700 |ddv_scf|^2 = 9.100E-13
End of self-consistent calculation
Convergence has been achieved
Representation # 2 modes # 2 3
Self-consistent Calculation
iter # 1 total cpu time : 35.8 secs av.it.: 3.4
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 3.732E-08
iter # 2 total cpu time : 36.2 secs av.it.: 5.9
thresh= 1.932E-05 alpha_mix = 0.700 |ddv_scf|^2 = 3.496E-09
iter # 3 total cpu time : 36.6 secs av.it.: 5.7
thresh= 5.913E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.153E-11
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 8
List of q in the star:
1 0.250000000 0.250000000 0.250000000
2 -0.250000000 -0.250000000 -0.250000000
3 -0.250000000 0.250000000 -0.250000000
4 -0.250000000 0.250000000 0.250000000
5 -0.250000000 -0.250000000 0.250000000
6 0.250000000 -0.250000000 0.250000000
7 0.250000000 -0.250000000 -0.250000000
8 0.250000000 0.250000000 -0.250000000
Diagonalizing the dynamical matrix
q = ( 0.250000000 0.250000000 0.250000000 )
**************************************************************************
freq ( 1) = 3.512884 [THz] = 117.177204 [cm-1]
freq ( 2) = 3.512884 [THz] = 117.177204 [cm-1]
freq ( 3) = 6.337625 [THz] = 211.400403 [cm-1]
**************************************************************************
Mode symmetry, C_3v (3m) point group:
freq ( 1 - 2) = 117.2 [cm-1] --> E L_3
freq ( 3 - 3) = 211.4 [cm-1] --> A_1 L_1
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 26.430867
lambda( 1)= 0.0459 gamma= 1.45 GHz
lambda( 2)= 0.0459 gamma= 1.45 GHz
lambda( 3)= 0.3442 gamma= 35.32 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 21.429882
lambda( 1)= 0.0698 gamma= 2.22 GHz
lambda( 2)= 0.0698 gamma= 2.22 GHz
lambda( 3)= 0.3560 gamma= 36.91 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 20.494460
lambda( 1)= 0.0728 gamma= 2.39 GHz
lambda( 2)= 0.0728 gamma= 2.39 GHz
lambda( 3)= 0.3385 gamma= 36.12 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 19.158893
lambda( 1)= 0.0720 gamma= 2.37 GHz
lambda( 2)= 0.0720 gamma= 2.37 GHz
lambda( 3)= 0.3200 gamma= 34.29 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 18.018277
lambda( 1)= 0.0726 gamma= 2.38 GHz
lambda( 2)= 0.0726 gamma= 2.38 GHz
lambda( 3)= 0.3070 gamma= 32.75 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 17.200343
lambda( 1)= 0.0744 gamma= 2.42 GHz
lambda( 2)= 0.0744 gamma= 2.42 GHz
lambda( 3)= 0.2987 gamma= 31.55 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 16.721708
lambda( 1)= 0.0772 gamma= 2.48 GHz
lambda( 2)= 0.0772 gamma= 2.48 GHz
lambda( 3)= 0.2951 gamma= 30.79 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 16.504692
lambda( 1)= 0.0806 gamma= 2.56 GHz
lambda( 2)= 0.0806 gamma= 2.56 GHz
lambda( 3)= 0.2944 gamma= 30.41 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 16.445757
lambda( 1)= 0.0840 gamma= 2.65 GHz
lambda( 2)= 0.0840 gamma= 2.65 GHz
lambda( 3)= 0.2947 gamma= 30.28 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 16.461924
lambda( 1)= 0.0873 gamma= 2.75 GHz
lambda( 2)= 0.0873 gamma= 2.75 GHz
lambda( 3)= 0.2950 gamma= 30.26 GHz
Calculation of q = 0.0000000 0.0000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 43 869 869 181
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062
k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0312500
k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500
k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0312500
k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0156250
k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0234375
k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0937500
k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0937500
k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0937500
k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0937500
k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0937500
k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0468750
k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0234375
k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0937500
k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0937500
k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0937500
k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0468750
k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0234375
k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0937500
k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0468750
k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0117188
k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0937500
k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.1875000
k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0937500
k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0937500
k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000
k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0937500
k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0468750
k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0234375
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.51 MB
The potential is recalculated from file :
./_ph0/aluminum.q_8/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.4
total cpu time spent up to now is 14.9 secs
End of band structure calculation
k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev):
-3.1905 21.1791 21.1791 21.1791 22.5559 22.5559
k =-0.1250 0.1250-0.1250 ( 107 PWs) bands (ev):
-2.7432 16.7424 20.1788 20.1788 23.2673 24.1714
k =-0.2500 0.2500-0.2500 ( 104 PWs) bands (ev):
-1.4192 11.7921 19.3971 19.3971 22.9597 23.3426
k =-0.3750 0.3750-0.3750 ( 99 PWs) bands (ev):
0.7472 7.4148 19.3063 19.3063 21.3010 21.3010
k = 0.5000-0.5000 0.5000 ( 108 PWs) bands (ev):
3.5959 3.8201 19.8997 19.8997 19.9675 19.9675
k = 0.0000 0.2500 0.0000 ( 109 PWs) bands (ev):
-2.5963 18.3809 18.3809 18.5807 21.4899 23.2598
k =-0.1250 0.3750-0.1250 ( 105 PWs) bands (ev):
-1.5646 13.6745 17.3092 18.8466 20.1249 22.7024
k =-0.2500 0.5000-0.2500 ( 100 PWs) bands (ev):
0.3184 9.1428 16.9626 17.6720 18.7359 24.8907
k = 0.6250-0.3750 0.6250 ( 103 PWs) bands (ev):
3.0030 5.2356 16.0319 17.3393 19.1716 23.3119
k = 0.5000-0.2500 0.5000 ( 103 PWs) bands (ev):
2.0232 6.4566 15.1468 18.4483 20.3702 22.4444
k = 0.3750-0.1250 0.3750 ( 100 PWs) bands (ev):
-0.4008 10.5631 15.0570 20.2786 22.2917 22.3016
k = 0.2500 0.0000 0.2500 ( 109 PWs) bands (ev):
-2.0061 14.8067 16.1745 22.3349 22.5311 23.9983
k = 0.0000 0.5000 0.0000 ( 101 PWs) bands (ev):
-0.8352 15.7883 15.9791 15.9791 16.6948 19.6305
k =-0.1250 0.6250-0.1250 ( 102 PWs) bands (ev):
0.7484 11.5552 13.9819 15.3797 16.8431 20.9945
k = 0.7500-0.2500 0.7500 ( 104 PWs) bands (ev):
3.1397 7.5222 12.0332 15.5077 17.2170 24.6967
k = 0.6250-0.1250 0.6250 ( 101 PWs) bands (ev):
4.1106 6.2837 10.9030 16.3666 18.2368 26.3744
k = 0.5000 0.0000 0.5000 ( 97 PWs) bands (ev):
1.4600 9.5229 11.1704 17.9584 19.9899 25.7819
k = 0.0000 0.7500 0.0000 ( 104 PWs) bands (ev):
2.0191 10.9279 14.0595 14.5356 14.5356 18.2072
k = 0.8750-0.1250 0.8750 ( 104 PWs) bands (ev):
4.0824 8.6644 10.5465 14.4188 15.7415 20.0602
k = 0.7500 0.0000 0.7500 ( 102 PWs) bands (ev):
6.3730 6.8679 7.9529 15.0260 16.6758 24.2856
k = 0.0000-1.0000 0.0000 ( 108 PWs) bands (ev):
5.3322 6.6439 13.4761 14.0562 14.0562 17.6954
k =-0.2500 0.5000 0.0000 ( 104 PWs) bands (ev):
-0.2570 12.1642 13.7101 17.2559 20.6545 22.4777
k = 0.6250-0.3750 0.8750 ( 103 PWs) bands (ev):
1.8823 8.4268 12.9754 15.1041 21.3116 23.4584
k = 0.5000-0.2500 0.7500 ( 102 PWs) bands (ev):
4.6528 4.9627 13.3015 13.9658 21.8092 22.3648
k = 0.7500-0.2500 1.0000 ( 102 PWs) bands (ev):
2.5825 10.5748 11.2912 12.4298 19.1119 21.2514
k = 0.6250-0.1250 0.8750 ( 104 PWs) bands (ev):
5.1677 7.3413 9.7861 12.0722 20.3586 24.5659
k = 0.5000 0.0000 0.7500 ( 108 PWs) bands (ev):
4.2439 7.9410 9.5098 13.1695 21.6037 24.9640
k =-0.2500-1.0000 0.0000 ( 104 PWs) bands (ev):
5.8512 7.2029 10.0444 11.7573 18.5864 20.8033
k =-0.5000-1.0000 0.0000 ( 108 PWs) bands (ev):
7.4162 7.4162 8.3730 9.6362 24.4638 24.4638
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_8/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.0000000 0.0000000 0.0000000 )
49 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, O_h (m-3m) point group:
Atomic displacements:
There are 1 irreducible representations
Representation 1 3 modes -T_1u G_15 G_4- To be done
Alpha used in Ewald sum = 0.7000
PHONON : 35.29s CPU 37.21s WALL
Representation # 1 modes # 1 2 3
Self-consistent Calculation
Pert. # 1: Fermi energy shift (Ry) = 1.1374E-24 -6.8962E-37
Pert. # 2: Fermi energy shift (Ry) = 6.1392E-25 1.7241E-37
Pert. # 3: Fermi energy shift (Ry) = 7.1517E-25 -1.8808E-37
iter # 1 total cpu time : 37.4 secs av.it.: 3.3
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.431E-08
Pert. # 1: Fermi energy shift (Ry) = 2.7573E-25 0.0000E+00
Pert. # 2: Fermi energy shift (Ry) = -7.3671E-25 -1.0408E-39
Pert. # 3: Fermi energy shift (Ry) = -1.5337E-24 1.7143E-39
iter # 2 total cpu time : 37.5 secs av.it.: 5.5
thresh= 1.196E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.497E-09
Pert. # 1: Fermi energy shift (Ry) = -4.8252E-25 9.7958E-40
Pert. # 2: Fermi energy shift (Ry) = 5.2345E-25 4.6836E-39
Pert. # 3: Fermi energy shift (Ry) = -1.0512E-24 3.6734E-40
iter # 3 total cpu time : 37.7 secs av.it.: 5.3
thresh= 3.869E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.764E-13
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Diagonalizing the dynamical matrix
q = ( 0.000000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 0.172822 [THz] = 5.764724 [cm-1]
freq ( 2) = 0.172822 [THz] = 5.764724 [cm-1]
freq ( 3) = 0.172822 [THz] = 5.764724 [cm-1]
**************************************************************************
Mode symmetry, O_h (m-3m) point group:
freq ( 1 - 3) = 5.8 [cm-1] --> T_1u G_15 G_4- I
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef =104.058472
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0000 gamma= 0.00 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 56.351825
lambda( 1)= 0.0000 gamma= 0.32 GHz
lambda( 2)= 0.0000 gamma= 0.32 GHz
lambda( 3)= 0.0000 gamma= 0.32 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 42.846628
lambda( 1)= 0.0000 gamma= 1.23 GHz
lambda( 2)= 0.0000 gamma= 1.23 GHz
lambda( 3)= 0.0000 gamma= 1.23 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 36.753205
lambda( 1)= 0.0000 gamma= 2.20 GHz
lambda( 2)= 0.0000 gamma= 2.20 GHz
lambda( 3)= 0.0000 gamma= 2.20 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 32.865749
lambda( 1)= 0.0000 gamma= 2.67 GHz
lambda( 2)= 0.0000 gamma= 2.67 GHz
lambda( 3)= 0.0000 gamma= 2.67 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 29.857732
lambda( 1)= 0.0000 gamma= 2.80 GHz
lambda( 2)= 0.0000 gamma= 2.80 GHz
lambda( 3)= 0.0000 gamma= 2.80 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 27.504730
lambda( 1)= 0.0000 gamma= 2.87 GHz
lambda( 2)= 0.0000 gamma= 2.87 GHz
lambda( 3)= 0.0000 gamma= 2.87 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 25.729520
lambda( 1)= 0.0000 gamma= 2.95 GHz
lambda( 2)= 0.0000 gamma= 2.95 GHz
lambda( 3)= 0.0000 gamma= 2.95 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 24.395210
lambda( 1)= 0.0000 gamma= 3.04 GHz
lambda( 2)= 0.0000 gamma= 3.04 GHz
lambda( 3)= 0.0000 gamma= 3.04 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 23.360102
lambda( 1)= 0.0000 gamma= 3.12 GHz
lambda( 2)= 0.0000 gamma= 3.12 GHz
lambda( 3)= 0.0000 gamma= 3.12 GHz
Calculation of q = 0.2500000 0.2500000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_9/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.4
total cpu time spent up to now is 18.1 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_9/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.2500000 0.2500000 0.0000000 )
4 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_2v (mm2) point group:
Atomic displacements:
There are 3 irreducible representations
Representation 1 1 modes -A_1 D_1 S_1 To be done
Representation 2 1 modes -B_1 D_3 S_3 To be done
Representation 3 1 modes -B_2 D_4 S_4 To be done
Alpha used in Ewald sum = 0.7000
PHONON : 38.98s CPU 41.08s WALL
Representation # 1 mode # 1
Self-consistent Calculation
iter # 1 total cpu time : 41.4 secs av.it.: 4.1
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 7.346E-02
iter # 2 total cpu time : 41.7 secs av.it.: 5.0
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 6.383E+00
iter # 3 total cpu time : 42.0 secs av.it.: 4.9
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 6.067E-06
iter # 4 total cpu time : 42.2 secs av.it.: 4.1
thresh= 2.463E-04 alpha_mix = 0.700 |ddv_scf|^2 = 3.078E-09
iter # 5 total cpu time : 42.5 secs av.it.: 5.1
thresh= 5.548E-06 alpha_mix = 0.700 |ddv_scf|^2 = 9.728E-11
End of self-consistent calculation
Convergence has been achieved
Representation # 2 mode # 2
Self-consistent Calculation
iter # 1 total cpu time : 43.0 secs av.it.: 3.2
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.282E-07
iter # 2 total cpu time : 43.3 secs av.it.: 4.8
thresh= 3.580E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.350E-08
iter # 3 total cpu time : 43.6 secs av.it.: 4.6
thresh= 1.162E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.525E-12
End of self-consistent calculation
Convergence has been achieved
Representation # 3 mode # 3
Self-consistent Calculation
iter # 1 total cpu time : 44.1 secs av.it.: 3.4
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 3.693E-07
iter # 2 total cpu time : 44.4 secs av.it.: 5.4
thresh= 6.077E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.376E-08
iter # 3 total cpu time : 44.7 secs av.it.: 4.8
thresh= 1.173E-05 alpha_mix = 0.700 |ddv_scf|^2 = 8.428E-10
iter # 4 total cpu time : 45.0 secs av.it.: 4.8
thresh= 2.903E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.180E-13
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 12
List of q in the star:
1 0.250000000 0.250000000 0.000000000
2 0.000000000 0.250000000 0.250000000
3 -0.250000000 0.000000000 -0.250000000
4 -0.250000000 -0.250000000 0.000000000
5 0.000000000 -0.250000000 -0.250000000
6 -0.250000000 0.000000000 0.250000000
7 -0.250000000 0.250000000 0.000000000
8 0.250000000 -0.250000000 0.000000000
9 0.250000000 0.000000000 -0.250000000
10 0.000000000 -0.250000000 0.250000000
11 0.000000000 0.250000000 -0.250000000
12 0.250000000 0.000000000 0.250000000
Diagonalizing the dynamical matrix
q = ( 0.250000000 0.250000000 0.000000000 )
**************************************************************************
freq ( 1) = 3.022844 [THz] = 100.831222 [cm-1]
freq ( 2) = 3.330076 [THz] = 111.079393 [cm-1]
freq ( 3) = 5.522148 [THz] = 184.199029 [cm-1]
**************************************************************************
Mode symmetry, C_2v (mm2) point group:
freq ( 1 - 1) = 100.8 [cm-1] --> B_1 D_3 S_3
freq ( 2 - 2) = 111.1 [cm-1] --> B_2 D_4 S_4
freq ( 3 - 3) = 184.2 [cm-1] --> A_1 D_1 S_1
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 20.055744
lambda( 1)= 0.0284 gamma= 0.66 GHz
lambda( 2)= 0.0596 gamma= 1.69 GHz
lambda( 3)= 0.9457 gamma= 73.68 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 18.372730
lambda( 1)= 0.0579 gamma= 1.37 GHz
lambda( 2)= 0.1093 gamma= 3.13 GHz
lambda( 3)= 0.5440 gamma= 42.82 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 18.934984
lambda( 1)= 0.0609 gamma= 1.48 GHz
lambda( 2)= 0.1558 gamma= 4.59 GHz
lambda( 3)= 0.4182 gamma= 33.87 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 18.371978
lambda( 1)= 0.0629 gamma= 1.53 GHz
lambda( 2)= 0.1776 gamma= 5.25 GHz
lambda( 3)= 0.3656 gamma= 29.74 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 18.036860
lambda( 1)= 0.0658 gamma= 1.60 GHz
lambda( 2)= 0.1891 gamma= 5.57 GHz
lambda( 3)= 0.3492 gamma= 28.28 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 17.830958
lambda( 1)= 0.0688 gamma= 1.65 GHz
lambda( 2)= 0.1959 gamma= 5.71 GHz
lambda( 3)= 0.3460 gamma= 27.74 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 17.718582
lambda( 1)= 0.0719 gamma= 1.71 GHz
lambda( 2)= 0.2011 gamma= 5.79 GHz
lambda( 3)= 0.3477 gamma= 27.53 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 17.683107
lambda( 1)= 0.0753 gamma= 1.77 GHz
lambda( 2)= 0.2052 gamma= 5.85 GHz
lambda( 3)= 0.3504 gamma= 27.48 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 17.686639
lambda( 1)= 0.0785 gamma= 1.84 GHz
lambda( 2)= 0.2080 gamma= 5.90 GHz
lambda( 3)= 0.3520 gamma= 27.46 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 17.692563
lambda( 1)= 0.0815 gamma= 1.90 GHz
lambda( 2)= 0.2097 gamma= 5.94 GHz
lambda( 3)= 0.3518 gamma= 27.39 GHz
Calculation of q = 0.5000000 0.5000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 307
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_10/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.6
total cpu time spent up to now is 21.4 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_10/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.5000000 0.5000000 0.0000000 )
4 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_2v (mm2) point group:
Atomic displacements:
There are 3 irreducible representations
Representation 1 1 modes -A_1 D_1 S_1 To be done
Representation 2 1 modes -B_1 D_3 S_3 To be done
Representation 3 1 modes -B_2 D_4 S_4 To be done
Alpha used in Ewald sum = 0.7000
PHONON : 46.06s CPU 48.58s WALL
Representation # 1 mode # 1
Self-consistent Calculation
iter # 1 total cpu time : 48.9 secs av.it.: 4.0
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 6.628E-04
iter # 2 total cpu time : 49.2 secs av.it.: 4.9
thresh= 2.574E-03 alpha_mix = 0.700 |ddv_scf|^2 = 2.330E-03
iter # 3 total cpu time : 49.5 secs av.it.: 4.1
thresh= 4.827E-03 alpha_mix = 0.700 |ddv_scf|^2 = 4.772E-08
iter # 4 total cpu time : 49.8 secs av.it.: 5.9
thresh= 2.184E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.749E-09
iter # 5 total cpu time : 50.1 secs av.it.: 5.4
thresh= 4.182E-06 alpha_mix = 0.700 |ddv_scf|^2 = 7.393E-11
End of self-consistent calculation
Convergence has been achieved
Representation # 2 mode # 2
Self-consistent Calculation
iter # 1 total cpu time : 50.6 secs av.it.: 3.2
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 2.031E-07
iter # 2 total cpu time : 50.9 secs av.it.: 5.2
thresh= 4.507E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.465E-08
iter # 3 total cpu time : 51.1 secs av.it.: 5.0
thresh= 1.210E-05 alpha_mix = 0.700 |ddv_scf|^2 = 2.194E-10
iter # 4 total cpu time : 51.4 secs av.it.: 5.1
thresh= 1.481E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.610E-13
End of self-consistent calculation
Convergence has been achieved
Representation # 3 mode # 3
Self-consistent Calculation
iter # 1 total cpu time : 51.9 secs av.it.: 3.6
thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 5.702E-06
iter # 2 total cpu time : 52.2 secs av.it.: 5.4
thresh= 2.388E-04 alpha_mix = 0.700 |ddv_scf|^2 = 3.765E-07
iter # 3 total cpu time : 52.5 secs av.it.: 5.3
thresh= 6.136E-05 alpha_mix = 0.700 |ddv_scf|^2 = 3.022E-09
iter # 4 total cpu time : 52.8 secs av.it.: 5.2
thresh= 5.497E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.988E-12
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 12
List of q in the star:
1 0.500000000 0.500000000 0.000000000
2 0.000000000 0.500000000 0.500000000
3 -0.500000000 0.000000000 -0.500000000
4 -0.500000000 -0.500000000 0.000000000
5 0.000000000 -0.500000000 -0.500000000
6 -0.500000000 0.000000000 0.500000000
7 -0.500000000 0.500000000 0.000000000
8 0.500000000 -0.500000000 0.000000000
9 0.500000000 0.000000000 -0.500000000
10 0.000000000 -0.500000000 0.500000000
11 0.000000000 0.500000000 -0.500000000
12 0.500000000 0.000000000 0.500000000
Diagonalizing the dynamical matrix
q = ( 0.500000000 0.500000000 0.000000000 )
**************************************************************************
freq ( 1) = 4.864101 [THz] = 162.248947 [cm-1]
freq ( 2) = 6.528749 [THz] = 217.775609 [cm-1]
freq ( 3) = 8.467445 [THz] = 282.443561 [cm-1]
**************************************************************************
Mode symmetry, C_2v (mm2) point group:
freq ( 1 - 1) = 162.2 [cm-1] --> B_1 D_3 S_3
freq ( 2 - 2) = 217.8 [cm-1] --> B_2 D_4 S_4
freq ( 3 - 3) = 282.4 [cm-1] --> A_1 D_1 S_1
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 40.569273
lambda( 1)= 0.1200 gamma= 7.25 GHz
lambda( 2)= 0.1920 gamma= 20.91 GHz
lambda( 3)= 0.9766 gamma= 178.91 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 22.157373
lambda( 1)= 0.0585 gamma= 3.58 GHz
lambda( 2)= 0.1723 gamma= 18.96 GHz
lambda( 3)= 0.3917 gamma= 72.50 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 18.361264
lambda( 1)= 0.0478 gamma= 3.00 GHz
lambda( 2)= 0.1541 gamma= 17.45 GHz
lambda( 3)= 0.2632 gamma= 50.13 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 16.418327
lambda( 1)= 0.0422 gamma= 2.66 GHz
lambda( 2)= 0.1424 gamma= 16.19 GHz
lambda( 3)= 0.2192 gamma= 41.93 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 15.413854
lambda( 1)= 0.0396 gamma= 2.49 GHz
lambda( 2)= 0.1383 gamma= 15.66 GHz
lambda( 3)= 0.2049 gamma= 39.01 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 14.878508
lambda( 1)= 0.0390 gamma= 2.43 GHz
lambda( 2)= 0.1369 gamma= 15.34 GHz
lambda( 3)= 0.2014 gamma= 37.97 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 14.573333
lambda( 1)= 0.0396 gamma= 2.43 GHz
lambda( 2)= 0.1362 gamma= 15.08 GHz
lambda( 3)= 0.2012 gamma= 37.46 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 14.414003
lambda( 1)= 0.0405 gamma= 2.46 GHz
lambda( 2)= 0.1360 gamma= 14.90 GHz
lambda( 3)= 0.2015 gamma= 37.16 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 14.350015
lambda( 1)= 0.0415 gamma= 2.51 GHz
lambda( 2)= 0.1360 gamma= 14.82 GHz
lambda( 3)= 0.2015 gamma= 36.96 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 14.342522
lambda( 1)= 0.0426 gamma= 2.57 GHz
lambda( 2)= 0.1361 gamma= 14.81 GHz
lambda( 3)= 0.2012 gamma= 36.83 GHz
init_run : 0.07s CPU 0.07s WALL ( 9 calls)
electrons : 20.36s CPU 21.09s WALL ( 9 calls)
Called by init_run:
wfcinit : 0.00s CPU 0.00s WALL ( 9 calls)
potinit : 0.00s CPU 0.00s WALL ( 9 calls)
hinit0 : 0.04s CPU 0.04s WALL ( 9 calls)
Called by electrons:
c_bands : 20.34s CPU 21.07s WALL ( 9 calls)
v_of_rho : 0.00s CPU 0.00s WALL ( 10 calls)
Called by c_bands:
init_us_2 : 0.46s CPU 0.47s WALL ( 23105 calls)
cegterg : 18.69s CPU 19.28s WALL ( 2237 calls)
Called by sum_band:
Called by *egterg:
cdiaghg : 3.62s CPU 3.66s WALL ( 31113 calls)
h_psi : 28.97s CPU 30.09s WALL ( 116286 calls)
g_psi : 0.20s CPU 0.21s WALL ( 28964 calls)
Called by h_psi:
h_psi:calbec : 0.58s CPU 0.71s WALL ( 116286 calls)
vloc_psi : 27.54s CPU 28.31s WALL ( 116286 calls)
add_vuspsi : 0.44s CPU 0.51s WALL ( 116286 calls)
General routines
calbec : 0.67s CPU 0.76s WALL ( 223876 calls)
fft : 0.03s CPU 0.03s WALL ( 442 calls)
ffts : 0.18s CPU 0.18s WALL ( 3521 calls)
fftw : 33.42s CPU 34.02s WALL ( 734970 calls)
davcio : 0.31s CPU 0.88s WALL ( 86017 calls)
Parallel routines
PHONON : 50.29s CPU 53.05s WALL
INITIALIZATION:
phq_setup : 0.04s CPU 0.04s WALL ( 10 calls)
phq_init : 0.17s CPU 0.20s WALL ( 10 calls)
phq_init : 0.17s CPU 0.20s WALL ( 10 calls)
init_vloc : 0.00s CPU 0.00s WALL ( 10 calls)
init_us_1 : 0.02s CPU 0.02s WALL ( 10 calls)
DYNAMICAL MATRIX:
dynmat0 : 0.09s CPU 0.11s WALL ( 10 calls)
phqscf : 28.92s CPU 30.80s WALL ( 10 calls)
dynmatrix : 0.01s CPU 0.02s WALL ( 10 calls)
phqscf : 28.92s CPU 30.80s WALL ( 10 calls)
solve_linter : 28.70s CPU 30.55s WALL ( 21 calls)
drhodv : 0.18s CPU 0.21s WALL ( 21 calls)
dynmat0 : 0.09s CPU 0.11s WALL ( 10 calls)
dynmat_us : 0.09s CPU 0.10s WALL ( 10 calls)
d2ionq : 0.00s CPU 0.00s WALL ( 10 calls)
dynmat_us : 0.09s CPU 0.10s WALL ( 10 calls)
phqscf : 28.92s CPU 30.80s WALL ( 10 calls)
solve_linter : 28.70s CPU 30.55s WALL ( 21 calls)
solve_linter : 28.70s CPU 30.55s WALL ( 21 calls)
dvqpsi_us : 2.34s CPU 2.40s WALL ( 3354 calls)
ortho : 0.18s CPU 0.19s WALL ( 14913 calls)
cgsolve : 15.92s CPU 17.04s WALL ( 14913 calls)
incdrhoscf : 3.22s CPU 3.20s WALL ( 14913 calls)
vpsifft : 2.36s CPU 2.40s WALL ( 11559 calls)
dv_of_drho : 0.02s CPU 0.02s WALL ( 122 calls)
mix_pot : 0.02s CPU 0.03s WALL ( 93 calls)
ef_shift : 0.00s CPU 0.01s WALL ( 8 calls)
localdos : 0.01s CPU 0.01s WALL ( 2 calls)
psymdvscf : 0.24s CPU 0.24s WALL ( 93 calls)
dvqpsi_us : 2.34s CPU 2.40s WALL ( 3354 calls)
dvqpsi_us_on : 0.07s CPU 0.10s WALL ( 3354 calls)
cgsolve : 15.92s CPU 17.04s WALL ( 14913 calls)
ch_psi : 15.53s CPU 16.60s WALL ( 82936 calls)
ch_psi : 15.53s CPU 16.60s WALL ( 82936 calls)
h_psi : 28.97s CPU 30.09s WALL ( 116286 calls)
last : 0.58s CPU 0.77s WALL ( 82936 calls)
h_psi : 28.97s CPU 30.09s WALL ( 116286 calls)
add_vuspsi : 0.44s CPU 0.51s WALL ( 116286 calls)
incdrhoscf : 3.22s CPU 3.20s WALL ( 14913 calls)
General routines
calbec : 0.67s CPU 0.76s WALL ( 223876 calls)
fft : 0.03s CPU 0.03s WALL ( 442 calls)
ffts : 0.18s CPU 0.18s WALL ( 3521 calls)
fftw : 33.42s CPU 34.02s WALL ( 734970 calls)
davcio : 0.31s CPU 0.88s WALL ( 86017 calls)
write_rec : 0.14s CPU 0.16s WALL ( 114 calls)
PHONON : 50.29s CPU 53.05s WALL
This run was terminated on: 18:42:21 21Mar2020
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=