quantum-espresso/test-suite/ph_U_insulator_us/benchmark.out.git.inp=BN.sc...

995 lines
34 KiB
Plaintext

Program PWSCF v.6.5Max starts on 3Dec2019 at 18: 6:20
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
MPI processes distributed on 1 nodes
Waiting for input...
Reading input from standard input
Current dimensions of program PWSCF are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
file B.pbe-n-rrkjus_psl.1.0.0.UPF: wavefunction(s) 2S renormalized
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 367 187 61 24911 8849 1637
bravais-lattice index = 4
lattice parameter (alat) = 4.7419 a.u.
unit-cell volume = 397.0601 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 2
number of electrons = 8.00
number of Kohn-Sham states= 4
kinetic-energy cutoff = 30.0000 Ry
charge density cutoff = 240.0000 Ry
convergence threshold = 1.0E-14
mixing beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
celldm(1)= 4.741900 celldm(2)= 0.000000 celldm(3)= 4.300000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( -0.500000 0.866025 0.000000 )
a(3) = ( 0.000000 0.000000 4.300000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.577350 0.000000 )
b(2) = ( 0.000000 1.154701 0.000000 )
b(3) = ( 0.000000 0.000000 0.232558 )
PseudoPot. # 1 for N read from file:
../../pseudo/N.pbe-n-rrkjus_psl.1.0.0.UPF
MD5 check sum: ada94e3ed05223de5319d0572dc76806
Pseudo is Ultrasoft + core correction, Zval = 5.0
Generated using "atomic" code by A. Dal Corso v.6.3MaX
Using radial grid of 1085 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for B read from file:
../../pseudo/B.pbe-n-rrkjus_psl.1.0.0.UPF
MD5 check sum: 21bc42b8719306ef1fe0545c7dabf1c6
Pseudo is Ultrasoft + core correction, Zval = 3.0
Generated using "atomic" code by A. Dal Corso v.6.3MaX
Using radial grid of 1059 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
N 5.00 14.00674 N ( 1.00)
B 3.00 10.81000 B ( 1.00)
Simplified LDA+U calculation (l_max = 1) with parameters (eV):
atomic species L U alpha J0 beta
N 1 2.0000 0.0000 0.0000 0.0000
12 Sym. Ops. (no inversion) found ( 8 have fractional translation)
s frac. trans.
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [0,1,0]
cryst. s( 2) = ( -1 0 0 )
( 1 1 0 )
( 0 0 -1 )
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 3) = ( 0 1 0 ) f =( -0.5000000 )
( -1 -1 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s( 3) = ( -0.5000000 -0.8660254 0.0000000 ) f =( -0.2500000 )
( 0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
isym = 4 120 deg rotation - cryst. axis [0,0,-1]
cryst. s( 4) = ( -1 -1 0 ) f =( 0.0000000 )
( 1 0 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s( 4) = ( -0.5000000 0.8660254 0.0000000 ) f =( 0.2500000 )
( -0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
isym = 5 180 deg rotation - cryst. axis [1,-1,0]
cryst. s( 5) = ( 0 -1 0 ) f =( -0.5000000 )
( -1 0 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s( 5) = ( 0.5000000 -0.8660254 0.0000000 ) f =( -0.2500000 )
( -0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 6 180 deg rotation - cryst. axis [2,1,0]
cryst. s( 6) = ( 1 1 0 ) f =( 0.0000000 )
( 0 -1 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s( 6) = ( 0.5000000 0.8660254 0.0000000 ) f =( 0.2500000 )
( 0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 7 inv. 180 deg rotation - cart. axis [0,0,1]
cryst. s( 7) = ( 1 0 0 )
( 0 1 0 )
( 0 0 -1 )
cart. s( 7) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 8 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 8) = ( -1 0 0 )
( 1 1 0 )
( 0 0 1 )
cart. s( 8) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 inv. 60 deg rotation - cryst. axis [0,0,1]
cryst. s( 9) = ( -1 -1 0 ) f =( 0.0000000 )
( 1 0 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s( 9) = ( -0.5000000 0.8660254 0.0000000 ) f =( 0.2500000 )
( -0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 10 inv. 60 deg rotation - cryst. axis [0,0,-1]
cryst. s(10) = ( 0 1 0 ) f =( -0.5000000 )
( -1 -1 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s(10) = ( -0.5000000 -0.8660254 0.0000000 ) f =( -0.2500000 )
( 0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 11 inv. 180 deg rotation - cryst. axis [0,1,0]
cryst. s(11) = ( 1 1 0 ) f =( 0.0000000 )
( 0 -1 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s(11) = ( 0.5000000 0.8660254 0.0000000 ) f =( 0.2500000 )
( 0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
isym = 12 inv. 180 deg rotation - cryst. axis [1,1,0]
cryst. s(12) = ( 0 -1 0 ) f =( -0.5000000 )
( -1 0 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s(12) = ( 0.5000000 -0.8660254 0.0000000 ) f =( -0.2500000 )
( -0.8660254 -0.5000000 0.0000000 ) ( -0.4330127 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
point group D_3h (-62m)
there are 6 classes
the character table:
E 2C3 3C2 s_h 2S3 3s_v
A'_1 1.00 1.00 1.00 1.00 1.00 1.00
A'_2 1.00 1.00 -1.00 1.00 1.00 -1.00
E' 2.00 -1.00 0.00 2.00 -1.00 0.00
A''1 1.00 1.00 1.00 -1.00 -1.00 -1.00
A''2 1.00 1.00 -1.00 -1.00 -1.00 1.00
E'' 2.00 -1.00 0.00 -2.00 1.00 0.00
the symmetry operations in each class and the name of the first element:
E 1
identity
2C3 3 4
120 deg rotation - cryst. axis [0,0,1]
3C2 2 6 5
180 deg rotation - cart. axis [0,1,0]
s_h 7
inv. 180 deg rotation - cart. axis [0,0,1]
2S3 9 10
inv. 60 deg rotation - cryst. axis [0,0,1]
3s_v 8 11 12
inv. 180 deg rotation - cart. axis [1,0,0]
Cartesian axes
site n. atom positions (alat units)
1 N tau( 1) = ( 0.0000000 -0.2886751 0.0000000 )
2 B tau( 2) = ( 0.0000000 0.2886751 0.0000000 )
Crystallographic axes
site n. atom positions (cryst. coord.)
1 N tau( 1) = ( -0.1666667 -0.3333333 0.0000000 )
2 B tau( 2) = ( 0.1666667 0.3333333 0.0000000 )
number of k points= 4
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( 0.0000000 0.2886751 0.0000000), wk = 0.7500000
k( 3) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.3750000
k( 4) = ( 0.2500000 0.4330127 0.0000000), wk = 0.7500000
cryst. coord.
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( 0.0000000 0.2500000 0.0000000), wk = 0.7500000
k( 3) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.3750000
k( 4) = ( 0.2500000 0.2500000 0.0000000), wk = 0.7500000
Dense grid: 24911 G-vectors FFT dimensions: ( 24, 24, 108)
Smooth grid: 8849 G-vectors FFT dimensions: ( 18, 18, 72)
Dynamical RAM for wfc: 0.07 MB
Dynamical RAM for wfc (w. buffer): 0.34 MB
Dynamical RAM for U proj.: 0.05 MB
Dynamical RAM for U proj. (w. buff.): 0.25 MB
Dynamical RAM for str. fact: 0.76 MB
Dynamical RAM for local pot: 0.00 MB
Dynamical RAM for nlocal pot: 0.27 MB
Dynamical RAM for qrad: 0.54 MB
Dynamical RAM for rho,v,vnew: 2.56 MB
Dynamical RAM for rhoin: 0.85 MB
Dynamical RAM for rho*nmix: 6.08 MB
Dynamical RAM for G-vectors: 1.49 MB
Dynamical RAM for h,s,v(r/c): 0.01 MB
Dynamical RAM for <psi|beta>: 0.00 MB
Dynamical RAM for psi: 0.27 MB
Dynamical RAM for hpsi: 0.27 MB
Dynamical RAM for spsi: 0.27 MB
Dynamical RAM for wfcinit/wfcrot: 0.27 MB
Dynamical RAM for addusdens: 16.72 MB
Dynamical RAM for addusforce: 18.06 MB
Dynamical RAM for addusstress: 19.01 MB
Estimated static dynamical RAM per process > 16.66 MB
Estimated max dynamical RAM per process > 35.67 MB
Check: negative core charge= -0.000008
Initial potential from superposition of free atoms
starting charge 7.99971, renormalised to 8.00000
negative rho (up, down): 1.225E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.1102
-------
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 3.00000
eigenvalues:
0.500 0.500 0.500
eigenvectors:
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000
occupations:
0.500 0.000 0.000
0.000 0.500 0.000
0.000 0.000 0.500
N of occupied +U levels = 3.000000
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are NOT orthogonalized
Starting wfcs are 8 randomized atomic wfcs
total cpu time spent up to now is 0.8 secs
Self-consistent Calculation
iteration # 1 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.00E-02, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.64937
eigenvalues:
0.940 0.940 0.945
eigenvectors:
0.000 0.000 1.000
0.056 0.944 0.000
0.944 0.056 0.000
occupations:
0.945 0.000 -0.000
0.000 0.940 0.000
-0.000 0.000 0.940
N of occupied +U levels = 5.649367
--- exit write_ns ---
negative rho (up, down): 2.755E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0243
-------
total cpu time spent up to now is 0.9 secs
total energy = -26.76525931 Ry
Harris-Foulkes estimate = -26.94955732 Ry
estimated scf accuracy < 0.40903238 Ry
iteration # 2 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 5.11E-03, avg # of iterations = 2.2
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.34592
eigenvalues:
0.858 0.907 0.907
eigenvectors:
1.000 0.000 0.000
0.000 0.057 0.943
0.000 0.943 0.057
occupations:
0.858 0.000 -0.000
0.000 0.907 0.000
-0.000 0.000 0.907
N of occupied +U levels = 5.345922
--- exit write_ns ---
negative rho (up, down): 1.043E-03 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0325
-------
total cpu time spent up to now is 1.0 secs
total energy = -26.86070030 Ry
Harris-Foulkes estimate = -26.95412581 Ry
estimated scf accuracy < 0.17867177 Ry
iteration # 3 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 2.23E-03, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.51894
eigenvalues:
0.903 0.928 0.928
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.903 0.000 -0.000
0.000 0.928 0.000
-0.000 0.000 0.928
N of occupied +U levels = 5.518943
--- exit write_ns ---
negative rho (up, down): 4.006E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0330
-------
total cpu time spent up to now is 1.1 secs
total energy = -26.89909435 Ry
Harris-Foulkes estimate = -26.89933693 Ry
estimated scf accuracy < 0.00206123 Ry
iteration # 4 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 2.58E-05, avg # of iterations = 3.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52641
eigenvalues:
0.907 0.928 0.928
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.907 0.000 -0.000
0.000 0.928 0.000
-0.000 0.000 0.928
N of occupied +U levels = 5.526415
--- exit write_ns ---
negative rho (up, down): 4.784E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0321
-------
total cpu time spent up to now is 1.2 secs
total energy = -26.89998928 Ry
Harris-Foulkes estimate = -26.90007431 Ry
estimated scf accuracy < 0.00026574 Ry
iteration # 5 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 3.32E-06, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52096
eigenvalues:
0.906 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.906 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.520957
--- exit write_ns ---
negative rho (up, down): 4.966E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0323
-------
total cpu time spent up to now is 1.3 secs
total energy = -26.90003296 Ry
Harris-Foulkes estimate = -26.90005754 Ry
estimated scf accuracy < 0.00004499 Ry
iteration # 6 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 5.62E-07, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52242
eigenvalues:
0.906 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.906 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.522421
--- exit write_ns ---
negative rho (up, down): 4.888E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0323
-------
total cpu time spent up to now is 1.4 secs
total energy = -26.90004034 Ry
Harris-Foulkes estimate = -26.90004051 Ry
estimated scf accuracy < 0.00000051 Ry
iteration # 7 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 6.33E-09, avg # of iterations = 3.5
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52290
eigenvalues:
0.907 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.907 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.522899
--- exit write_ns ---
negative rho (up, down): 4.902E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0322
-------
total cpu time spent up to now is 1.5 secs
total energy = -26.90004062 Ry
Harris-Foulkes estimate = -26.90004068 Ry
estimated scf accuracy < 0.00000020 Ry
iteration # 8 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 2.51E-09, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52278
eigenvalues:
0.907 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.907 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.522780
--- exit write_ns ---
negative rho (up, down): 4.902E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0322
-------
total cpu time spent up to now is 1.6 secs
total energy = -26.90004063 Ry
Harris-Foulkes estimate = -26.90004064 Ry
estimated scf accuracy < 5.0E-09 Ry
iteration # 9 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 6.21E-11, avg # of iterations = 2.8
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52275
eigenvalues:
0.907 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.907 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.522748
--- exit write_ns ---
negative rho (up, down): 4.902E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0322
-------
total cpu time spent up to now is 1.7 secs
total energy = -26.90004064 Ry
Harris-Foulkes estimate = -26.90004064 Ry
estimated scf accuracy < 1.2E-10 Ry
iteration # 10 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.56E-12, avg # of iterations = 2.2
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52275
eigenvalues:
0.907 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.907 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.522748
--- exit write_ns ---
negative rho (up, down): 4.902E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0322
-------
total cpu time spent up to now is 1.8 secs
total energy = -26.90004064 Ry
Harris-Foulkes estimate = -26.90004064 Ry
estimated scf accuracy < 2.9E-11 Ry
iteration # 11 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 3.67E-13, avg # of iterations = 3.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52275
eigenvalues:
0.907 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.907 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.522751
--- exit write_ns ---
negative rho (up, down): 4.902E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0322
-------
total cpu time spent up to now is 1.9 secs
total energy = -26.90004064 Ry
Harris-Foulkes estimate = -26.90004064 Ry
estimated scf accuracy < 5.0E-12 Ry
iteration # 12 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.00E-13, avg # of iterations = 2.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52275
eigenvalues:
0.907 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.907 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.522750
--- exit write_ns ---
negative rho (up, down): 4.902E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0322
-------
total cpu time spent up to now is 2.0 secs
total energy = -26.90004064 Ry
Harris-Foulkes estimate = -26.90004064 Ry
estimated scf accuracy < 3.0E-14 Ry
iteration # 13 ecut= 30.00 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.00E-13, avg # of iterations = 1.0
--- enter write_ns ---
LDA+U parameters:
U( 1) = 2.00000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 5.52275
eigenvalues:
0.907 0.927 0.927
eigenvectors:
1.000 0.000 0.000
0.000 0.056 0.944
0.000 0.944 0.056
occupations:
0.907 0.000 -0.000
0.000 0.927 0.000
-0.000 0.000 0.927
N of occupied +U levels = 5.522750
--- exit write_ns ---
negative rho (up, down): 4.902E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0322
-------
total cpu time spent up to now is 2.0 secs
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 1049 PWs) bands (ev):
-20.1851 -8.7056 -4.2772 -4.2772
occupation numbers
1.0000 1.0000 1.0000 1.0000
k = 0.0000 0.2887 0.0000 ( 1103 PWs) bands (ev):
-19.2726 -8.2972 -6.9437 -5.9763
occupation numbers
1.0000 1.0000 1.0000 1.0000
k = 0.0000-0.5774 0.0000 ( 1124 PWs) bands (ev):
-17.1182 -12.5608 -7.2123 -4.0283
occupation numbers
1.0000 1.0000 1.0000 1.0000
k = 0.2500 0.4330 0.0000 ( 1106 PWs) bands (ev):
-17.3656 -11.0055 -9.0842 -4.2264
occupation numbers
1.0000 1.0000 1.0000 1.0000
highest occupied level (ev): -4.0283
! total energy = -26.90004064 Ry
Harris-Foulkes estimate = -26.90004064 Ry
estimated scf accuracy < 1.5E-15 Ry
The total energy is the sum of the following terms:
one-electron contribution = -100.84437896 Ry
hartree contribution = 52.52326920 Ry
xc contribution = -8.82032376 Ry
ewald contribution = 30.20914866 Ry
Hubbard energy = 0.03224423 Ry
convergence has been achieved in 13 iterations
negative rho (up, down): 4.902E-04 0.000E+00
Forces acting on atoms (cartesian axes, Ry/au):
atom 1 type 1 force = 0.00000000 0.00000000 0.00000000
atom 2 type 2 force = -0.00000000 -0.00000000 0.00000000
The non-local contrib. to forces
atom 1 type 1 force = 0.00000000 0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 -0.00000000 0.00000000
The ionic contribution to forces
atom 1 type 1 force = 0.00000000 0.00000001 0.00000000
atom 2 type 2 force = -0.00000000 -0.00000001 0.00000000
The local contribution to forces
atom 1 type 1 force = -0.00000000 -0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 0.00000001 0.00000000
The core correction contribution to forces
atom 1 type 1 force = -0.00000000 0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 -0.00000000 0.00000000
The Hubbard contrib. to forces
atom 1 type 1 force = 0.00000000 0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 0.00000000 0.00000000
The SCF correction term to forces
atom 1 type 1 force = 0.00000000 -0.00000000 0.00000000
atom 2 type 2 force = -0.00000000 -0.00000000 -0.00000000
Total force = 0.000000 Total SCF correction = 0.000000
Computing stress (Cartesian axis) and pressure
negative rho (up, down): 4.902E-04 0.000E+00
total stress (Ry/bohr**3) (kbar) P= -52.08
-0.00035627 -0.00000000 0.00000000 -52.41 -0.00 0.00
-0.00000000 -0.00035627 0.00000000 -0.00 -52.41 0.00
0.00000000 -0.00000000 -0.00034947 0.00 -0.00 -51.41
kinetic stress (kbar) 3803.99 0.00 -0.00
0.00 3803.99 -0.00
0.00 0.00 4217.54
local stress (kbar) -40284.17 -0.00 -0.00
-0.00 -40284.17 0.00
-0.00 0.00 40468.62
nonloc. stress (kbar) 108.12 -0.00 0.00
-0.00 108.12 0.00
0.00 0.00 96.48
hartree stress (kbar) 18671.25 0.00 0.00
0.00 18671.25 0.00
0.00 0.00 -17883.38
exc-cor stress (kbar) -418.18 -0.00 0.00
-0.00 -418.18 0.00
0.00 0.00 -454.65
corecor stress (kbar) -503.27 -0.00 -0.00
-0.00 -503.27 0.00
-0.00 0.00 -487.18
ewald stress (kbar) 18595.79 0.00 0.00
0.00 18595.79 0.00
0.00 0.00 -25999.52
hubbard stress (kbar) -25.93 0.00 0.00
0.00 -25.93 0.00
0.00 0.00 -9.32
london stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
DFT-D3 stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
XDM stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
dft-nl stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
TS-vdW stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
Writing output data file ./bn.save/
init_run : 0.36s CPU 0.38s WALL ( 1 calls)
electrons : 1.19s CPU 1.21s WALL ( 1 calls)
forces : 0.10s CPU 0.10s WALL ( 1 calls)
stress : 0.28s CPU 0.28s WALL ( 1 calls)
Called by init_run:
wfcinit : 0.02s CPU 0.02s WALL ( 1 calls)
wfcinit:atom : 0.00s CPU 0.00s WALL ( 4 calls)
wfcinit:wfcr : 0.02s CPU 0.02s WALL ( 4 calls)
potinit : 0.05s CPU 0.05s WALL ( 1 calls)
hinit0 : 0.27s CPU 0.28s WALL ( 1 calls)
Called by electrons:
c_bands : 0.34s CPU 0.36s WALL ( 13 calls)
sum_band : 0.35s CPU 0.35s WALL ( 13 calls)
v_of_rho : 0.30s CPU 0.31s WALL ( 14 calls)
v_h : 0.01s CPU 0.01s WALL ( 14 calls)
v_xc : 0.32s CPU 0.34s WALL ( 16 calls)
newd : 0.18s CPU 0.19s WALL ( 14 calls)
mix_rho : 0.04s CPU 0.03s WALL ( 13 calls)
Called by c_bands:
init_us_2 : 0.05s CPU 0.04s WALL ( 160 calls)
cegterg : 0.30s CPU 0.32s WALL ( 52 calls)
Called by sum_band:
sum_band:bec : 0.00s CPU 0.00s WALL ( 52 calls)
addusdens : 0.23s CPU 0.24s WALL ( 13 calls)
Called by *egterg:
h_psi : 0.26s CPU 0.30s WALL ( 175 calls)
s_psi : 0.00s CPU 0.01s WALL ( 219 calls)
g_psi : 0.00s CPU 0.00s WALL ( 119 calls)
cdiaghg : 0.01s CPU 0.01s WALL ( 171 calls)
cegterg:over : 0.01s CPU 0.01s WALL ( 119 calls)
cegterg:upda : 0.01s CPU 0.00s WALL ( 119 calls)
cegterg:last : 0.00s CPU 0.00s WALL ( 52 calls)
Called by h_psi:
h_psi:calbec : 0.00s CPU 0.01s WALL ( 175 calls)
vloc_psi : 0.26s CPU 0.28s WALL ( 175 calls)
add_vuspsi : 0.01s CPU 0.01s WALL ( 175 calls)
vhpsi : 0.00s CPU 0.00s WALL ( 175 calls)
General routines
calbec : 0.00s CPU 0.02s WALL ( 882 calls)
fft : 0.10s CPU 0.11s WALL ( 205 calls)
ffts : 0.00s CPU 0.01s WALL ( 27 calls)
fftw : 0.27s CPU 0.29s WALL ( 1484 calls)
interpolate : 0.01s CPU 0.01s WALL ( 14 calls)
davcio : 0.00s CPU 0.00s WALL ( 4 calls)
Parallel routines
Hubbard U routines
new_ns : 0.00s CPU 0.00s WALL ( 13 calls)
vhpsi : 0.00s CPU 0.00s WALL ( 175 calls)
force_hub : 0.00s CPU 0.00s WALL ( 1 calls)
stres_hub : 0.08s CPU 0.08s WALL ( 1 calls)
PWSCF : 2.37s CPU 2.41s WALL
This run was terminated on: 18: 6:22 3Dec2019
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=