quantum-espresso/XSpectra/examples/reference/diamond.xspectra.out

951 lines
51 KiB
Plaintext

Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:31:54
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
-------------------------------------------------------------------------
__ ____ _
\ \/ / _\_ __ ___ ___| |_ _ __ __ _
\ /\ \| '_ \ / _ \/ __| __| '__/ _` |
/ \_\ \ |_) | __/ (__| |_| | | (_| |
/_/\_\__/ .__/ \___|\___|\__|_| \__,_|
|_|
In publications arising from the use of XSpectra, please cite:
- O. Bunau and M. Calandra,
Phys. Rev. B 87, 205105 (2013)
- Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
Phys. Rev. B 80, 075102 (2009)
- M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
Phys. Rev. B 66, 195107 (2002)
-------------------------------------------------------------------------
Reading input_file
-------------------------------------------------------------------------
calculation: xanes_dipole
xepsilon [crystallographic coordinates]: 1.000000 0.000000 0.000000
xonly_plot: FALSE
=> complete calculation: Lanczos + spectrum plot
filecore (core-wavefunction file): C.wfc
main plot parameters:
cut_occ_states: FALSE
gamma_mode: constant
-> using xgamma [eV]: 0.80
xemin [eV]: -10.00
xemax [eV]: 30.00
xnepoint: 300
energy zero automatically set to the Fermi level
Fermi level determined from SCF save directory (diamond.save)
NB: For an insulator (SCF calculated with occupations="fixed")
the Fermi level will be placed at the position of HOMO.
WARNING: variable ef_r is obsolete
-------------------------------------------------------------------------
Reading SCF save directory: diamond.save
-------------------------------------------------------------------------
Reading data from directory:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/diamond.save
Info: using nr1, nr2, nr3 values from input
Info: using nr1, nr2, nr3 values from input
IMPORTANT: XC functional enforced from input :
Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 577 577 185 10443 10443 1863
highest occupied level (ev): 13.3353
-------------------------------------------------------------------------
Getting the Fermi energy
-------------------------------------------------------------------------
From SCF save directory:
ehomo [eV]: 13.3353 (highest occupied level)
No LUMO value in SCF calculation
ef [eV]: 13.3353
-> ef (in eV) will be written in x_save_file
-------------------------------------------------------------------------
Energy zero of the spectrum
-------------------------------------------------------------------------
-> ef will be used as energy zero of the spectrum
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 577 577 221 10443 10443 2373
bravais-lattice index = 1
lattice parameter (alat) = 6.7403 a.u.
unit-cell volume = 306.2169 (a.u.)^3
number of atoms/cell = 8
number of atomic types = 2
number of electrons = 32.00
number of Kohn-Sham states= 16
kinetic-energy cutoff = 40.0000 Ry
charge density cutoff = 160.0000 Ry
Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0)
celldm(1)= 6.740256 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( 0.000000 1.000000 0.000000 )
a(3) = ( 0.000000 0.000000 1.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.000000 0.000000 )
b(2) = ( 0.000000 1.000000 0.000000 )
b(3) = ( 0.000000 0.000000 1.000000 )
PseudoPot. # 1 for C read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/C_PBE_TM_2pj.UPF
MD5 check sum: e8858615eb0a4b79f05373b4879fdf67
Pseudo is Norm-conserving, Zval = 4.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1073 points, 1 beta functions with:
l(1) = 0
PseudoPot. # 2 for C read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/C_PBE_TM_2pj.UPF
MD5 check sum: e8858615eb0a4b79f05373b4879fdf67
Pseudo is Norm-conserving, Zval = 4.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1073 points, 1 beta functions with:
l(1) = 0
atomic species valence mass pseudopotential
C_h 4.00 12.00000 C ( 1.00)
C 4.00 12.00000 C ( 1.00)
24 Sym. Ops. (no inversion) found
Cartesian axes
site n. atom positions (alat units)
1 C_h tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 C tau( 2) = ( 0.0000000 0.5000000 0.5000000 )
3 C tau( 3) = ( 0.5000000 0.0000000 0.5000000 )
4 C tau( 4) = ( 0.5000000 0.5000000 0.0000000 )
5 C tau( 5) = ( 0.7500000 0.7500000 0.2500000 )
6 C tau( 6) = ( 0.7500000 0.2500000 0.7500000 )
7 C tau( 7) = ( 0.2500000 0.7500000 0.7500000 )
8 C tau( 8) = ( 0.2500000 0.2500000 0.2500000 )
number of k points= 64
cart. coord. in units 2pi/alat
k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0312500
k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.0312500
k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.0312500
k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.0312500
k( 5) = ( 0.1250000 0.3750000 0.1250000), wk = 0.0312500
k( 6) = ( 0.1250000 0.3750000 0.3750000), wk = 0.0312500
k( 7) = ( 0.1250000 0.3750000 0.6250000), wk = 0.0312500
k( 8) = ( 0.1250000 0.3750000 0.8750000), wk = 0.0312500
k( 9) = ( 0.1250000 0.6250000 0.1250000), wk = 0.0312500
k( 10) = ( 0.1250000 0.6250000 0.3750000), wk = 0.0312500
k( 11) = ( 0.1250000 0.6250000 0.6250000), wk = 0.0312500
k( 12) = ( 0.1250000 0.6250000 0.8750000), wk = 0.0312500
k( 13) = ( 0.1250000 0.8750000 0.1250000), wk = 0.0312500
k( 14) = ( 0.1250000 0.8750000 0.3750000), wk = 0.0312500
k( 15) = ( 0.1250000 0.8750000 0.6250000), wk = 0.0312500
k( 16) = ( 0.1250000 0.8750000 0.8750000), wk = 0.0312500
k( 17) = ( 0.3750000 0.1250000 0.1250000), wk = 0.0312500
k( 18) = ( 0.3750000 0.1250000 0.3750000), wk = 0.0312500
k( 19) = ( 0.3750000 0.1250000 0.6250000), wk = 0.0312500
k( 20) = ( 0.3750000 0.1250000 0.8750000), wk = 0.0312500
k( 21) = ( 0.3750000 0.3750000 0.1250000), wk = 0.0312500
k( 22) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0312500
k( 23) = ( 0.3750000 0.3750000 0.6250000), wk = 0.0312500
k( 24) = ( 0.3750000 0.3750000 0.8750000), wk = 0.0312500
k( 25) = ( 0.3750000 0.6250000 0.1250000), wk = 0.0312500
k( 26) = ( 0.3750000 0.6250000 0.3750000), wk = 0.0312500
k( 27) = ( 0.3750000 0.6250000 0.6250000), wk = 0.0312500
k( 28) = ( 0.3750000 0.6250000 0.8750000), wk = 0.0312500
k( 29) = ( 0.3750000 0.8750000 0.1250000), wk = 0.0312500
k( 30) = ( 0.3750000 0.8750000 0.3750000), wk = 0.0312500
k( 31) = ( 0.3750000 0.8750000 0.6250000), wk = 0.0312500
k( 32) = ( 0.3750000 0.8750000 0.8750000), wk = 0.0312500
k( 33) = ( 0.6250000 0.1250000 0.1250000), wk = 0.0312500
k( 34) = ( 0.6250000 0.1250000 0.3750000), wk = 0.0312500
k( 35) = ( 0.6250000 0.1250000 0.6250000), wk = 0.0312500
k( 36) = ( 0.6250000 0.1250000 0.8750000), wk = 0.0312500
k( 37) = ( 0.6250000 0.3750000 0.1250000), wk = 0.0312500
k( 38) = ( 0.6250000 0.3750000 0.3750000), wk = 0.0312500
k( 39) = ( 0.6250000 0.3750000 0.6250000), wk = 0.0312500
k( 40) = ( 0.6250000 0.3750000 0.8750000), wk = 0.0312500
k( 41) = ( 0.6250000 0.6250000 0.1250000), wk = 0.0312500
k( 42) = ( 0.6250000 0.6250000 0.3750000), wk = 0.0312500
k( 43) = ( 0.6250000 0.6250000 0.6250000), wk = 0.0312500
k( 44) = ( 0.6250000 0.6250000 0.8750000), wk = 0.0312500
k( 45) = ( 0.6250000 0.8750000 0.1250000), wk = 0.0312500
k( 46) = ( 0.6250000 0.8750000 0.3750000), wk = 0.0312500
k( 47) = ( 0.6250000 0.8750000 0.6250000), wk = 0.0312500
k( 48) = ( 0.6250000 0.8750000 0.8750000), wk = 0.0312500
k( 49) = ( 0.8750000 0.1250000 0.1250000), wk = 0.0312500
k( 50) = ( 0.8750000 0.1250000 0.3750000), wk = 0.0312500
k( 51) = ( 0.8750000 0.1250000 0.6250000), wk = 0.0312500
k( 52) = ( 0.8750000 0.1250000 0.8750000), wk = 0.0312500
k( 53) = ( 0.8750000 0.3750000 0.1250000), wk = 0.0312500
k( 54) = ( 0.8750000 0.3750000 0.3750000), wk = 0.0312500
k( 55) = ( 0.8750000 0.3750000 0.6250000), wk = 0.0312500
k( 56) = ( 0.8750000 0.3750000 0.8750000), wk = 0.0312500
k( 57) = ( 0.8750000 0.6250000 0.1250000), wk = 0.0312500
k( 58) = ( 0.8750000 0.6250000 0.3750000), wk = 0.0312500
k( 59) = ( 0.8750000 0.6250000 0.6250000), wk = 0.0312500
k( 60) = ( 0.8750000 0.6250000 0.8750000), wk = 0.0312500
k( 61) = ( 0.8750000 0.8750000 0.1250000), wk = 0.0312500
k( 62) = ( 0.8750000 0.8750000 0.3750000), wk = 0.0312500
k( 63) = ( 0.8750000 0.8750000 0.6250000), wk = 0.0312500
k( 64) = ( 0.8750000 0.8750000 0.8750000), wk = 0.0312500
Dense grid: 10443 G-vectors FFT dimensions: ( 27, 27, 27)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.32 Mb ( 1319, 16)
NL pseudopotentials 0.16 Mb ( 1319, 8)
Each V/rho on FFT grid 0.30 Mb ( 19683)
Each G-vector array 0.08 Mb ( 10443)
G-vector shells 0.00 Mb ( 156)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.32 Mb ( 1319, 16)
Each subspace H/S matrix 0.00 Mb ( 16, 16)
Each <psi_i|beta_j> matrix 0.00 Mb ( 8, 16)
The potential is recalculated from file :
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/diamond.save/charge-density.dat
Starting wfc are 64 atomic wfcs
-------------------------------------------------------------------------
Reading core wavefunction file for the absorbing atom
-------------------------------------------------------------------------
C.wfc successfully read
-------------------------------------------------------------------------
Attributing the PAW radii
for the absorbing atom [units: Bohr radius]
-------------------------------------------------------------------------
PAW proj 1: r_paw(l= 0)= 2.25 (1.5*r_cut)
PAW proj 2: r_paw(l= 0)= 2.25 (1.5*r_cut)
PAW proj 3: r_paw(l= 1)= 3.20 (from input file))
PAW proj 4: r_paw(l= 1)= 3.20 (from input file))
NB: The calculation will not necessary use all these r_paw values.
- For a edge in the electric-dipole approximation,
only the r_paw(l=1) values are used.
- For a K edge in the electric-quadrupole approximation,
only the r_paw(l=2) values are used.
- For a L2 or L3 edge in the electric-quadrupole approximation,
all projectors (s, p and d) are used.
-------------------------------------------------------------------------
Starting XANES calculation
in the electric dipole approximation
-------------------------------------------------------------------------
Method of calculation based on the Lanczos recursion algorithm
--------------------------------------------------------------
- STEP 1: Construction of a kpoint-dependent Lanczos basis,
in which the Hamiltonian is tridiagonal (each 'iter'
corresponds to the calculation of one more Lanczos vector)
- STEP 2: Calculation of the cross-section as a continued fraction
averaged over the k-points.
... Begin STEP 1 ...
Radial transition matrix element(s) used in the calculation of the
initial vector of the Lanczos basis (|tilde{phi}_abs> normalized)
| For PAW proj. (l=1) #1: radial matrix element = 0.157804700
| For PAW proj. (l=1) #2: radial matrix element = 0.201849769
|-------------------------------------------------------------
! k-point # 1: ( 0.1250, 0.1250, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397814E+00
| Estimated error at iter 50: 1.00475617
| Estimated error at iter 100: 0.08785416
| Estimated error at iter 150: 0.00219795
! => CONVERGED at iter 200 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 2: ( 0.1250, 0.1250, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02706932
| Estimated error at iter 200: 0.00433260
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 3: ( 0.1250, 0.1250, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02712562
| Estimated error at iter 200: 0.00437076
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 4: ( 0.1250, 0.1250, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397814E+00
| Estimated error at iter 50: 1.00475617
| Estimated error at iter 100: 0.08785416
| Estimated error at iter 150: 0.00219795
! => CONVERGED at iter 200 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 5: ( 0.1250, 0.3750, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02722663
| Estimated error at iter 200: 0.00446388
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 6: ( 0.1250, 0.3750, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397813E+00
| Estimated error at iter 50: 1.00439760
| Estimated error at iter 100: 0.15141316
| Estimated error at iter 150: 0.01978362
! => CONVERGED at iter 200 with error= 0.00060718
|-------------------------------------------------------------
! k-point # 7: ( 0.1250, 0.3750, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397813E+00
| Estimated error at iter 50: 1.00439760
| Estimated error at iter 100: 0.15141316
| Estimated error at iter 150: 0.01985657
! => CONVERGED at iter 200 with error= 0.00081333
|-------------------------------------------------------------
! k-point # 8: ( 0.1250, 0.3750, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02719440
| Estimated error at iter 200: 0.00442260
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 9: ( 0.1250, 0.6250, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02719448
| Estimated error at iter 200: 0.00442263
! => CONVERGED at iter 250 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 10: ( 0.1250, 0.6250, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397813E+00
| Estimated error at iter 50: 1.00439760
| Estimated error at iter 100: 0.15141316
| Estimated error at iter 150: 0.01981481
! => CONVERGED at iter 200 with error= 0.00069273
|-------------------------------------------------------------
! k-point # 11: ( 0.1250, 0.6250, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397813E+00
| Estimated error at iter 50: 1.00439760
| Estimated error at iter 100: 0.15141316
| Estimated error at iter 150: 0.01985104
! => CONVERGED at iter 200 with error= 0.00079660
|-------------------------------------------------------------
! k-point # 12: ( 0.1250, 0.6250, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02720083
| Estimated error at iter 200: 0.00445999
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 13: ( 0.1250, 0.8750, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397814E+00
| Estimated error at iter 50: 1.00475617
| Estimated error at iter 100: 0.08785416
| Estimated error at iter 150: 0.00219795
! => CONVERGED at iter 200 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 14: ( 0.1250, 0.8750, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02719749
| Estimated error at iter 200: 0.00445888
! => CONVERGED at iter 250 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 15: ( 0.1250, 0.8750, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02713793
| Estimated error at iter 200: 0.00437952
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 16: ( 0.1250, 0.8750, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397814E+00
| Estimated error at iter 50: 1.00475617
| Estimated error at iter 100: 0.08785416
| Estimated error at iter 150: 0.00219795
! => CONVERGED at iter 200 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 17: ( 0.3750, 0.1250, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397742E+00
| Estimated error at iter 50: 1.00457637
| Estimated error at iter 100: 0.24363170
| Estimated error at iter 150: 0.04657900
! => CONVERGED at iter 200 with error= 0.00004490
|-------------------------------------------------------------
! k-point # 18: ( 0.3750, 0.1250, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446802
| Estimated error at iter 200: 0.00569699
| Estimated error at iter 250: 0.00120992
! => CONVERGED at iter 300 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 19: ( 0.3750, 0.1250, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03445044
| Estimated error at iter 200: 0.00566401
| Estimated error at iter 250: 0.00121257
! => CONVERGED at iter 300 with error= 0.00000074
|-------------------------------------------------------------
! k-point # 20: ( 0.3750, 0.1250, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397742E+00
| Estimated error at iter 50: 1.00457637
| Estimated error at iter 100: 0.24363170
| Estimated error at iter 150: 0.04657893
! => CONVERGED at iter 200 with error= 0.00004347
|-------------------------------------------------------------
! k-point # 21: ( 0.3750, 0.3750, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446292
| Estimated error at iter 200: 0.00550944
! => CONVERGED at iter 250 with error= 0.00095928
|-------------------------------------------------------------
! k-point # 22: ( 0.3750, 0.3750, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397748E+00
| Estimated error at iter 50: 1.00470453
| Estimated error at iter 100: 0.18595285
| Estimated error at iter 150: 0.00349768
! => CONVERGED at iter 200 with error= 0.00000002
|-------------------------------------------------------------
! k-point # 23: ( 0.3750, 0.3750, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397748E+00
| Estimated error at iter 50: 1.00470453
| Estimated error at iter 100: 0.18595285
| Estimated error at iter 150: 0.00349768
! => CONVERGED at iter 200 with error= 0.00000002
|-------------------------------------------------------------
! k-point # 24: ( 0.3750, 0.3750, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446505
| Estimated error at iter 200: 0.00568932
| Estimated error at iter 250: 0.00120577
! => CONVERGED at iter 300 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 25: ( 0.3750, 0.6250, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03443212
| Estimated error at iter 200: 0.00557259
| Estimated error at iter 250: 0.00108995
! => CONVERGED at iter 300 with error= 0.00000074
|-------------------------------------------------------------
! k-point # 26: ( 0.3750, 0.6250, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397748E+00
| Estimated error at iter 50: 1.00470453
| Estimated error at iter 100: 0.18595285
| Estimated error at iter 150: 0.00349768
! => CONVERGED at iter 200 with error= 0.00000002
|-------------------------------------------------------------
! k-point # 27: ( 0.3750, 0.6250, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397748E+00
| Estimated error at iter 50: 1.00470453
| Estimated error at iter 100: 0.18595285
| Estimated error at iter 150: 0.00349768
! => CONVERGED at iter 200 with error= 0.00000002
|-------------------------------------------------------------
! k-point # 28: ( 0.3750, 0.6250, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446317
| Estimated error at iter 200: 0.00569241
| Estimated error at iter 250: 0.00122046
! => CONVERGED at iter 300 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 29: ( 0.3750, 0.8750, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397742E+00
| Estimated error at iter 50: 1.00457637
| Estimated error at iter 100: 0.24363170
| Estimated error at iter 150: 0.04657899
! => CONVERGED at iter 200 with error= 0.00004482
|-------------------------------------------------------------
! k-point # 30: ( 0.3750, 0.8750, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446455
| Estimated error at iter 200: 0.00569316
| Estimated error at iter 250: 0.00121625
! => CONVERGED at iter 300 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 31: ( 0.3750, 0.8750, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03437275
| Estimated error at iter 200: 0.00551003
| Estimated error at iter 250: 0.00119926
! => CONVERGED at iter 300 with error= 0.00000080
|-------------------------------------------------------------
! k-point # 32: ( 0.3750, 0.8750, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397742E+00
| Estimated error at iter 50: 1.00457637
| Estimated error at iter 100: 0.24363170
| Estimated error at iter 150: 0.04657903
! => CONVERGED at iter 200 with error= 0.00004485
|-------------------------------------------------------------
! k-point # 33: ( 0.6250, 0.1250, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397742E+00
| Estimated error at iter 50: 1.00457637
| Estimated error at iter 100: 0.24363170
| Estimated error at iter 150: 0.04657903
! => CONVERGED at iter 200 with error= 0.00004489
|-------------------------------------------------------------
! k-point # 34: ( 0.6250, 0.1250, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446692
| Estimated error at iter 200: 0.00558960
! => CONVERGED at iter 250 with error= 0.00098489
|-------------------------------------------------------------
! k-point # 35: ( 0.6250, 0.1250, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446534
| Estimated error at iter 200: 0.00566784
| Estimated error at iter 250: 0.00115745
! => CONVERGED at iter 300 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 36: ( 0.6250, 0.1250, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397742E+00
| Estimated error at iter 50: 1.00457637
| Estimated error at iter 100: 0.24363170
| Estimated error at iter 150: 0.04657901
! => CONVERGED at iter 200 with error= 0.00004484
|-------------------------------------------------------------
! k-point # 37: ( 0.6250, 0.3750, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446664
| Estimated error at iter 200: 0.00551943
! => CONVERGED at iter 250 with error= 0.00099067
|-------------------------------------------------------------
! k-point # 38: ( 0.6250, 0.3750, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397748E+00
| Estimated error at iter 50: 1.00470453
| Estimated error at iter 100: 0.18595285
| Estimated error at iter 150: 0.00349768
! => CONVERGED at iter 200 with error= 0.00000002
|-------------------------------------------------------------
! k-point # 39: ( 0.6250, 0.3750, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397748E+00
| Estimated error at iter 50: 1.00470453
| Estimated error at iter 100: 0.18595285
| Estimated error at iter 150: 0.00349768
! => CONVERGED at iter 200 with error= 0.00000002
|-------------------------------------------------------------
! k-point # 40: ( 0.6250, 0.3750, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446238
| Estimated error at iter 200: 0.00568745
| Estimated error at iter 250: 0.00121299
! => CONVERGED at iter 300 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 41: ( 0.6250, 0.6250, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446818
| Estimated error at iter 200: 0.00568558
| Estimated error at iter 250: 0.00118430
! => CONVERGED at iter 300 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 42: ( 0.6250, 0.6250, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397748E+00
| Estimated error at iter 50: 1.00470453
| Estimated error at iter 100: 0.18595285
| Estimated error at iter 150: 0.00349768
! => CONVERGED at iter 200 with error= 0.00000002
|-------------------------------------------------------------
! k-point # 43: ( 0.6250, 0.6250, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397748E+00
| Estimated error at iter 50: 1.00470453
| Estimated error at iter 100: 0.18595285
| Estimated error at iter 150: 0.00349768
! => CONVERGED at iter 200 with error= 0.00000002
|-------------------------------------------------------------
! k-point # 44: ( 0.6250, 0.6250, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446801
| Estimated error at iter 200: 0.00570236
| Estimated error at iter 250: 0.00122171
! => CONVERGED at iter 300 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 45: ( 0.6250, 0.8750, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397742E+00
| Estimated error at iter 50: 1.00457637
| Estimated error at iter 100: 0.24363170
| Estimated error at iter 150: 0.04657906
! => CONVERGED at iter 200 with error= 0.00004490
|-------------------------------------------------------------
! k-point # 46: ( 0.6250, 0.8750, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446400
| Estimated error at iter 200: 0.00561377
| Estimated error at iter 250: 0.00104273
! => CONVERGED at iter 300 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 47: ( 0.6250, 0.8750, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397747E+00
| Estimated error at iter 50: 1.00456327
| Estimated error at iter 100: 0.15707614
| Estimated error at iter 150: 0.03446351
| Estimated error at iter 200: 0.00568995
| Estimated error at iter 250: 0.00121367
! => CONVERGED at iter 300 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 48: ( 0.6250, 0.8750, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397742E+00
| Estimated error at iter 50: 1.00457637
| Estimated error at iter 100: 0.24363170
| Estimated error at iter 150: 0.04657907
! => CONVERGED at iter 200 with error= 0.00004480
|-------------------------------------------------------------
! k-point # 49: ( 0.8750, 0.1250, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397814E+00
| Estimated error at iter 50: 1.00475617
| Estimated error at iter 100: 0.08785416
| Estimated error at iter 150: 0.00219795
! => CONVERGED at iter 200 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 50: ( 0.8750, 0.1250, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02715515
| Estimated error at iter 200: 0.00439207
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 51: ( 0.8750, 0.1250, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02703847
| Estimated error at iter 200: 0.00431288
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 52: ( 0.8750, 0.1250, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397814E+00
| Estimated error at iter 50: 1.00475617
| Estimated error at iter 100: 0.08785416
| Estimated error at iter 150: 0.00219795
! => CONVERGED at iter 200 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 53: ( 0.8750, 0.3750, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02718143
| Estimated error at iter 200: 0.00441211
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 54: ( 0.8750, 0.3750, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397813E+00
| Estimated error at iter 50: 1.00439760
| Estimated error at iter 100: 0.15141316
| Estimated error at iter 150: 0.01988706
! => CONVERGED at iter 200 with error= 0.00091150
|-------------------------------------------------------------
! k-point # 55: ( 0.8750, 0.3750, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397813E+00
| Estimated error at iter 50: 1.00439760
| Estimated error at iter 100: 0.15141316
| Estimated error at iter 150: 0.01988209
! => CONVERGED at iter 200 with error= 0.00089468
|-------------------------------------------------------------
! k-point # 56: ( 0.8750, 0.3750, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02719951
| Estimated error at iter 200: 0.00442688
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 57: ( 0.8750, 0.6250, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02712941
| Estimated error at iter 200: 0.00437344
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 58: ( 0.8750, 0.6250, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397813E+00
| Estimated error at iter 50: 1.00439760
| Estimated error at iter 100: 0.15141316
| Estimated error at iter 150: 0.01988346
! => CONVERGED at iter 200 with error= 0.00089933
|-------------------------------------------------------------
! k-point # 59: ( 0.8750, 0.6250, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397813E+00
| Estimated error at iter 50: 1.00439760
| Estimated error at iter 100: 0.15141316
| Estimated error at iter 150: 0.01986553
! => CONVERGED at iter 200 with error= 0.00084140
|-------------------------------------------------------------
! k-point # 60: ( 0.8750, 0.6250, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02722534
| Estimated error at iter 200: 0.00445243
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 61: ( 0.8750, 0.8750, 0.1250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397814E+00
| Estimated error at iter 50: 1.00475617
| Estimated error at iter 100: 0.08785416
| Estimated error at iter 150: 0.00219795
! => CONVERGED at iter 200 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 62: ( 0.8750, 0.8750, 0.3750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02704728
| Estimated error at iter 200: 0.00431842
! => CONVERGED at iter 250 with error= 0.00000073
|-------------------------------------------------------------
! k-point # 63: ( 0.8750, 0.8750, 0.6250), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397812E+00
| Estimated error at iter 50: 1.00459257
| Estimated error at iter 100: 0.16937392
| Estimated error at iter 150: 0.02707594
| Estimated error at iter 200: 0.00433692
! => CONVERGED at iter 250 with error= 0.00000072
|-------------------------------------------------------------
! k-point # 64: ( 0.8750, 0.8750, 0.8750), 0.0312, 1
|-------------------------------------------------------------
okvan= F
| Norm of the initial Lanczos vector: 0.11397814E+00
| Estimated error at iter 50: 1.00475617
| Estimated error at iter 100: 0.08785416
| Estimated error at iter 150: 0.00219795
! => CONVERGED at iter 200 with error= 0.00000000
Results of STEP 1 successfully written in x_save_file
x_save_file name:
-> diamond.xspectra.sav
x_save_file version: 2
... End STEP 1 ...
... Begin STEP 2 ...
The spectrum is calculated using the following parameters:
energy-zero of the spectrum [eV]: 13.3353
the occupied states are NOT cut
xemin [eV]: -10.00
xemax [eV]: 30.00
xnepoint: 300
constant broadening parameter [eV]: 0.800
Core level energy [eV]: -284.2
(from electron binding energy of neutral atoms in X-ray data booklet)
Cross-section successfully written in xanes.dat
... End STEP 2 ...
xanes : 15.05s CPU 15.23s WALL ( 1 calls)
-------------------------------------------------------------------------
END JOB XSpectra
-------------------------------------------------------------------------