mirror of https://gitlab.com/QEF/q-e.git
568 lines
28 KiB
Plaintext
568 lines
28 KiB
Plaintext
|
|
Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:22: 0
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 1 processors
|
|
|
|
-------------------------------------------------------------------------
|
|
__ ____ _
|
|
\ \/ / _\_ __ ___ ___| |_ _ __ __ _
|
|
\ /\ \| '_ \ / _ \/ __| __| '__/ _` |
|
|
/ \_\ \ |_) | __/ (__| |_| | | (_| |
|
|
/_/\_\__/ .__/ \___|\___|\__|_| \__,_|
|
|
|_|
|
|
|
|
In publications arising from the use of XSpectra, please cite:
|
|
- O. Bunau and M. Calandra,
|
|
Phys. Rev. B 87, 205105 (2013)
|
|
- Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
|
|
Phys. Rev. B 80, 075102 (2009)
|
|
- M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
|
|
Phys. Rev. B 66, 195107 (2002)
|
|
|
|
-------------------------------------------------------------------------
|
|
Reading input_file
|
|
-------------------------------------------------------------------------
|
|
|
|
calculation: xanes_dipole
|
|
|
|
xepsilon [crystallographic coordinates]: 0.000000 0.000000 1.000000
|
|
|
|
xonly_plot: FALSE
|
|
=> complete calculation: Lanczos + spectrum plot
|
|
|
|
filecore (core-wavefunction file): Si.wfc
|
|
|
|
main plot parameters:
|
|
cut_occ_states: TRUE
|
|
gamma_mode: constant
|
|
-> using xgamma [eV]: 0.80
|
|
xemin [eV]: -10.00
|
|
xemax [eV]: 100.00
|
|
xnepoint: 1000
|
|
energy zero automatically set to the Fermi level
|
|
|
|
Fermi level determined from SCF save directory (SiO2.save)
|
|
NB: For an insulator (SCF calculated with occupations="fixed")
|
|
the Fermi level will be placed at the position of HOMO.
|
|
|
|
WARNING: variable ef_r is obsolete
|
|
|
|
-------------------------------------------------------------------------
|
|
Reading SCF save directory: SiO2.save
|
|
-------------------------------------------------------------------------
|
|
|
|
|
|
Reading data from directory:
|
|
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save
|
|
|
|
Info: using nr1, nr2, nr3 values from input
|
|
|
|
Info: using nr1, nr2, nr3 values from input
|
|
|
|
IMPORTANT: XC functional enforced from input :
|
|
Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0 0)
|
|
Any further DFT definition will be discarded
|
|
Please, verify this is what you really want
|
|
|
|
WARNING: atomic wfc # 2 for atom type 1 has zero norm
|
|
WARNING: atomic wfc # 2 for atom type 2 has zero norm
|
|
file O_PBE_USPP.UPF: wavefunction(s) 2S renormalized
|
|
|
|
G-vector sticks info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Sum 889 475 151 23595 9203 1559
|
|
|
|
|
|
the Fermi energy is 6.4758 ev
|
|
|
|
-------------------------------------------------------------------------
|
|
Getting the Fermi energy
|
|
-------------------------------------------------------------------------
|
|
|
|
From SCF save directory:
|
|
ef [eV]: 6.4758
|
|
|
|
-> ef (in eV) will be written in x_save_file
|
|
|
|
-------------------------------------------------------------------------
|
|
Energy zero of the spectrum
|
|
-------------------------------------------------------------------------
|
|
|
|
-> ef will be used as energy zero of the spectrum
|
|
|
|
G-vector sticks info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Sum 889 475 169 23595 9203 2057
|
|
|
|
|
|
|
|
bravais-lattice index = 4
|
|
lattice parameter (alat) = 9.2863 a.u.
|
|
unit-cell volume = 762.9417 (a.u.)^3
|
|
number of atoms/cell = 9
|
|
number of atomic types = 3
|
|
number of electrons = 48.00
|
|
number of Kohn-Sham states= 30
|
|
kinetic-energy cutoff = 20.0000 Ry
|
|
charge density cutoff = 150.0000 Ry
|
|
Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0 0)
|
|
|
|
celldm(1)= 9.286303 celldm(2)= 0.000000 celldm(3)= 1.100100
|
|
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
|
|
|
|
crystal axes: (cart. coord. in units of alat)
|
|
a(1) = ( 1.000000 0.000000 0.000000 )
|
|
a(2) = ( -0.500000 0.866025 0.000000 )
|
|
a(3) = ( 0.000000 0.000000 1.100100 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/alat)
|
|
b(1) = ( 1.000000 0.577350 -0.000000 )
|
|
b(2) = ( 0.000000 1.154701 0.000000 )
|
|
b(3) = ( 0.000000 -0.000000 0.909008 )
|
|
|
|
|
|
PseudoPot. # 1 for Si read from file:
|
|
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF
|
|
MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429
|
|
Pseudo is Ultrasoft, Zval = 4.0
|
|
Generated by new atomic code, or converted to UPF format
|
|
Using radial grid of 1141 points, 4 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 0
|
|
l(3) = 1
|
|
l(4) = 1
|
|
Q(r) pseudized with 0 coefficients
|
|
|
|
|
|
PseudoPot. # 2 for Si read from file:
|
|
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF
|
|
MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429
|
|
Pseudo is Ultrasoft, Zval = 4.0
|
|
Generated by new atomic code, or converted to UPF format
|
|
Using radial grid of 1141 points, 4 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 0
|
|
l(3) = 1
|
|
l(4) = 1
|
|
Q(r) pseudized with 0 coefficients
|
|
|
|
|
|
PseudoPot. # 3 for O read from file:
|
|
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/O_PBE_USPP.UPF
|
|
MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9
|
|
Pseudo is Ultrasoft, Zval = 6.0
|
|
Generated by new atomic code, or converted to UPF format
|
|
Using radial grid of 1269 points, 4 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 0
|
|
l(3) = 1
|
|
l(4) = 1
|
|
Q(r) pseudized with 0 coefficients
|
|
|
|
|
|
atomic species valence mass pseudopotential
|
|
Sih 4.00 28.08600 Si( 1.00)
|
|
Si 4.00 28.08600 Si( 1.00)
|
|
O 6.00 15.99940 O ( 1.00)
|
|
|
|
2 Sym. Ops. (no inversion) found
|
|
|
|
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom positions (alat units)
|
|
1 Sih tau( 1) = ( 0.4700000 0.0000000 0.0000000 )
|
|
2 Si tau( 2) = ( -0.2350000 0.4070319 0.7334000 )
|
|
3 Si tau( 3) = ( -0.2350000 -0.4070319 0.3667000 )
|
|
4 O tau( 4) = ( 0.2792500 0.2318350 0.1308019 )
|
|
5 O tau( 5) = ( 0.0611500 0.3577551 0.6025981 )
|
|
6 O tau( 6) = ( -0.3404000 0.1259201 0.8642019 )
|
|
7 O tau( 7) = ( -0.3404000 -0.1259201 0.2358981 )
|
|
8 O tau( 8) = ( 0.0611500 -0.3577551 0.4975019 )
|
|
9 O tau( 9) = ( 0.2792500 -0.2318350 -0.1308019 )
|
|
|
|
number of k points= 27 Methfessel-Paxton smearing, width (Ry)= 0.0300
|
|
cart. coord. in units 2pi/alat
|
|
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741
|
|
k( 2) = ( 0.0000000 0.0000000 0.3030028), wk = 0.0740741
|
|
k( 3) = ( 0.0000000 0.0000000 0.6060055), wk = 0.0740741
|
|
k( 4) = ( 0.0000000 0.3849002 0.0000000), wk = 0.0740741
|
|
k( 5) = ( 0.0000000 0.3849002 0.3030028), wk = 0.0740741
|
|
k( 6) = ( 0.0000000 0.3849002 0.6060055), wk = 0.0740741
|
|
k( 7) = ( 0.0000000 0.7698004 0.0000000), wk = 0.0740741
|
|
k( 8) = ( 0.0000000 0.7698004 0.3030028), wk = 0.0740741
|
|
k( 9) = ( 0.0000000 0.7698004 0.6060055), wk = 0.0740741
|
|
k( 10) = ( 0.3333333 0.1924501 0.0000000), wk = 0.0740741
|
|
k( 11) = ( 0.3333333 0.1924501 0.3030028), wk = 0.0740741
|
|
k( 12) = ( 0.3333333 0.1924501 0.6060055), wk = 0.0740741
|
|
k( 13) = ( 0.3333333 0.5773503 0.0000000), wk = 0.0740741
|
|
k( 14) = ( 0.3333333 0.5773503 0.3030028), wk = 0.0740741
|
|
k( 15) = ( 0.3333333 0.5773503 0.6060055), wk = 0.0740741
|
|
k( 16) = ( 0.3333333 0.9622504 0.0000000), wk = 0.0740741
|
|
k( 17) = ( 0.3333333 0.9622504 0.3030028), wk = 0.0740741
|
|
k( 18) = ( 0.3333333 0.9622504 0.6060055), wk = 0.0740741
|
|
k( 19) = ( 0.6666667 0.3849002 0.0000000), wk = 0.0740741
|
|
k( 20) = ( 0.6666667 0.3849002 0.3030028), wk = 0.0740741
|
|
k( 21) = ( 0.6666667 0.3849002 0.6060055), wk = 0.0740741
|
|
k( 22) = ( 0.6666667 0.7698004 0.0000000), wk = 0.0740741
|
|
k( 23) = ( 0.6666667 0.7698004 0.3030028), wk = 0.0740741
|
|
k( 24) = ( 0.6666667 0.7698004 0.6060055), wk = 0.0740741
|
|
k( 25) = ( 0.6666667 1.1547005 0.0000000), wk = 0.0740741
|
|
k( 26) = ( 0.6666667 1.1547005 0.3030028), wk = 0.0740741
|
|
k( 27) = ( 0.6666667 1.1547005 0.6060055), wk = 0.0740741
|
|
|
|
Dense grid: 23595 G-vectors FFT dimensions: ( 40, 40, 40)
|
|
|
|
Smooth grid: 9203 G-vectors FFT dimensions: ( 27, 27, 30)
|
|
|
|
Largest allocated arrays est. size (Mb) dimensions
|
|
Kohn-Sham Wavefunctions 0.54 Mb ( 1184, 30)
|
|
NL pseudopotentials 1.30 Mb ( 1184, 72)
|
|
Each V/rho on FFT grid 0.98 Mb ( 64000)
|
|
Each G-vector array 0.18 Mb ( 23595)
|
|
G-vector shells 0.01 Mb ( 1138)
|
|
Largest temporary arrays est. size (Mb) dimensions
|
|
Auxiliary wavefunctions 0.54 Mb ( 1184, 30)
|
|
Each subspace H/S matrix 0.01 Mb ( 30, 30)
|
|
Each <psi_i|beta_j> matrix 0.03 Mb ( 72, 30)
|
|
|
|
The potential is recalculated from file :
|
|
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save/charge-density.dat
|
|
|
|
Starting wfc are 60 atomic wfcs
|
|
|
|
-------------------------------------------------------------------------
|
|
Reading core wavefunction file for the absorbing atom
|
|
-------------------------------------------------------------------------
|
|
|
|
Si.wfc successfully read
|
|
|
|
-------------------------------------------------------------------------
|
|
Attributing the PAW radii
|
|
for the absorbing atom [units: Bohr radius]
|
|
-------------------------------------------------------------------------
|
|
|
|
PAW proj 1: r_paw(l= 0)= 3.60 (1.5*r_cut)
|
|
PAW proj 2: r_paw(l= 0)= 3.60 (1.5*r_cut)
|
|
PAW proj 3: r_paw(l= 1)= 2.40 (from input file))
|
|
PAW proj 4: r_paw(l= 1)= 2.40 (from input file))
|
|
PAW proj 5: r_paw(l= 2)= 3.00 (1.5*r_cut)
|
|
|
|
NB: The calculation will not necessary use all these r_paw values.
|
|
- For a edge in the electric-dipole approximation,
|
|
only the r_paw(l=1) values are used.
|
|
- For a K edge in the electric-quadrupole approximation,
|
|
only the r_paw(l=2) values are used.
|
|
|
|
- For a L2 or L3 edge in the electric-quadrupole approximation,
|
|
|
|
all projectors (s, p and d) are used.
|
|
|
|
|
|
init_gipaw_1: projectors nearly linearly dependent:
|
|
ntyp = 1, l/n1/n2 = 1 2 1 0.99554741
|
|
|
|
|
|
-------------------------------------------------------------------------
|
|
Starting XANES calculation
|
|
in the electric dipole approximation
|
|
-------------------------------------------------------------------------
|
|
|
|
x_save_file name: SiO2.xspectra_dip_restart_2.sav
|
|
x_save_file version: 2
|
|
|
|
nspin: 1
|
|
number of k-points: 27
|
|
|
|
final-state angular momentum (xm_r): 1
|
|
=> electric-dipole approximation
|
|
|
|
Fermi level [eV]: 6.4758
|
|
core energy [eV]: 1839.000
|
|
|
|
xepsilon [Cartesian frame]: 0.000000 0.000000 1.000000
|
|
|
|
Method of calculation based on the Lanczos recursion algorithm
|
|
--------------------------------------------------------------
|
|
- STEP 1: Construction of a kpoint-dependent Lanczos basis,
|
|
in which the Hamiltonian is tridiagonal (each 'iter'
|
|
corresponds to the calculation of one more Lanczos vector)
|
|
- STEP 2: Calculation of the cross-section as a continued fraction
|
|
averaged over the k-points.
|
|
|
|
... Begin STEP 1 ...
|
|
|
|
Radial transition matrix element(s) used in the calculation of the
|
|
initial vector of the Lanczos basis (|tilde{phi}_abs> normalized)
|
|
| For PAW proj. (l=1) #1: radial matrix element = 0.026695735
|
|
| For PAW proj. (l=1) #2: radial matrix element = 0.024893931
|
|
|
|
|-------------------------------------------------------------
|
|
! k-point # 1: ( 0.0000, 0.0000, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 2: ( 0.0000, 0.0000, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 3: ( 0.0000, 0.0000, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 4: ( 0.0000, 0.3849, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 5: ( 0.0000, 0.3849, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 6: ( 0.0000, 0.3849, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 7: ( 0.0000, 0.7698, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 8: ( 0.0000, 0.7698, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 9: ( 0.0000, 0.7698, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 10: ( 0.3333, 0.1925, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 11: ( 0.3333, 0.1925, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 12: ( 0.3333, 0.1925, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
|-------------------------------------------------------------
|
|
! k-point # 13: ( 0.3333, 0.5774, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
| Hilbert space is saturated
|
|
| xniter is set equal to 1158
|
|
| Increase kinetic-energy cutoff in your SCF calculation!
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14423824E-01
|
|
| Estimated error at iter 50: 1.00287041
|
|
| Estimated error at iter 100: 0.09569165
|
|
| Estimated error at iter 150: 0.03603029
|
|
| Estimated error at iter 200: 0.00701266
|
|
| Estimated error at iter 250: 0.00157020
|
|
! => CONVERGED at iter 300 with error= 0.00071183
|
|
|-------------------------------------------------------------
|
|
! k-point # 14: ( 0.3333, 0.5774, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
| Hilbert space is saturated
|
|
| xniter is set equal to 1149
|
|
| Increase kinetic-energy cutoff in your SCF calculation!
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14416648E-01
|
|
| Estimated error at iter 50: 1.00286783
|
|
| Estimated error at iter 100: 0.10247801
|
|
| Estimated error at iter 150: 0.02189022
|
|
| Estimated error at iter 200: 0.01046817
|
|
| Estimated error at iter 250: 0.00307962
|
|
| Estimated error at iter 300: 0.00123169
|
|
! => CONVERGED at iter 350 with error= 0.00055575
|
|
|-------------------------------------------------------------
|
|
! k-point # 15: ( 0.3333, 0.5774, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
| Hilbert space is saturated
|
|
| xniter is set equal to 1149
|
|
| Increase kinetic-energy cutoff in your SCF calculation!
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14416648E-01
|
|
| Estimated error at iter 50: 1.00286783
|
|
| Estimated error at iter 100: 0.10247801
|
|
| Estimated error at iter 150: 0.02190819
|
|
| Estimated error at iter 200: 0.01031259
|
|
| Estimated error at iter 250: 0.00292295
|
|
| Estimated error at iter 300: 0.00111243
|
|
! => CONVERGED at iter 350 with error= 0.00054450
|
|
|-------------------------------------------------------------
|
|
! k-point # 16: ( 0.3333, 0.9623, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14419907E-01
|
|
| Estimated error at iter 50: 1.00282646
|
|
| Estimated error at iter 100: 0.07749673
|
|
| Estimated error at iter 150: 0.02520130
|
|
| Estimated error at iter 200: 0.01207465
|
|
| Estimated error at iter 250: 0.00359796
|
|
| Estimated error at iter 300: 0.00134542
|
|
! => CONVERGED at iter 350 with error= 0.00066586
|
|
|-------------------------------------------------------------
|
|
! k-point # 17: ( 0.3333, 0.9623, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14417428E-01
|
|
| Estimated error at iter 50: 1.00285415
|
|
| Estimated error at iter 100: 0.10430261
|
|
| Estimated error at iter 150: 0.02686750
|
|
| Estimated error at iter 200: 0.01202935
|
|
| Estimated error at iter 250: 0.00450774
|
|
! => CONVERGED at iter 300 with error= 0.00098352
|
|
|-------------------------------------------------------------
|
|
! k-point # 18: ( 0.3333, 0.9623, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14417335E-01
|
|
| Estimated error at iter 50: 1.00283190
|
|
| Estimated error at iter 100: 0.10635822
|
|
| Estimated error at iter 150: 0.02116670
|
|
| Estimated error at iter 200: 0.00945711
|
|
| Estimated error at iter 250: 0.00335217
|
|
| Estimated error at iter 300: 0.00124925
|
|
! => CONVERGED at iter 350 with error= 0.00042985
|
|
|-------------------------------------------------------------
|
|
! k-point # 19: ( 0.6667, 0.3849, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14419907E-01
|
|
| Estimated error at iter 50: 1.00282646
|
|
| Estimated error at iter 100: 0.07749673
|
|
| Estimated error at iter 150: 0.02522260
|
|
| Estimated error at iter 200: 0.01214625
|
|
| Estimated error at iter 250: 0.00369838
|
|
| Estimated error at iter 300: 0.00127517
|
|
! => CONVERGED at iter 350 with error= 0.00034827
|
|
|-------------------------------------------------------------
|
|
! k-point # 20: ( 0.6667, 0.3849, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14417428E-01
|
|
| Estimated error at iter 50: 1.00285415
|
|
| Estimated error at iter 100: 0.10430261
|
|
| Estimated error at iter 150: 0.02685610
|
|
| Estimated error at iter 200: 0.01217102
|
|
| Estimated error at iter 250: 0.00413507
|
|
| Estimated error at iter 300: 0.00127816
|
|
! => CONVERGED at iter 350 with error= 0.00049156
|
|
|-------------------------------------------------------------
|
|
! k-point # 21: ( 0.6667, 0.3849, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14417335E-01
|
|
| Estimated error at iter 50: 1.00283190
|
|
| Estimated error at iter 100: 0.10635822
|
|
| Estimated error at iter 150: 0.02116939
|
|
| Estimated error at iter 200: 0.00941069
|
|
| Estimated error at iter 250: 0.00348398
|
|
| Estimated error at iter 300: 0.00146298
|
|
! => CONVERGED at iter 350 with error= 0.00042525
|
|
|-------------------------------------------------------------
|
|
! k-point # 22: ( 0.6667, 0.7698, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14419907E-01
|
|
| Estimated error at iter 50: 1.00282646
|
|
| Estimated error at iter 100: 0.07749673
|
|
| Estimated error at iter 150: 0.02517818
|
|
| Estimated error at iter 200: 0.01202410
|
|
| Estimated error at iter 250: 0.00356050
|
|
| Estimated error at iter 300: 0.00131787
|
|
! => CONVERGED at iter 350 with error= 0.00034087
|
|
|-------------------------------------------------------------
|
|
! k-point # 23: ( 0.6667, 0.7698, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14417335E-01
|
|
| Estimated error at iter 50: 1.00283190
|
|
| Estimated error at iter 100: 0.10635822
|
|
| Estimated error at iter 150: 0.02054182
|
|
| Estimated error at iter 200: 0.00893991
|
|
| Estimated error at iter 250: 0.00317095
|
|
| Estimated error at iter 300: 0.00123731
|
|
! => CONVERGED at iter 350 with error= 0.00047500
|
|
|-------------------------------------------------------------
|
|
! k-point # 24: ( 0.6667, 0.7698, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14417428E-01
|
|
| Estimated error at iter 50: 1.00285415
|
|
| Estimated error at iter 100: 0.10430261
|
|
| Estimated error at iter 150: 0.02686924
|
|
| Estimated error at iter 200: 0.01216574
|
|
| Estimated error at iter 250: 0.00410010
|
|
| Estimated error at iter 300: 0.00113321
|
|
! => CONVERGED at iter 350 with error= 0.00053165
|
|
|-------------------------------------------------------------
|
|
! k-point # 25: ( 0.6667, 1.1547, 0.0000), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14423824E-01
|
|
| Estimated error at iter 50: 1.00287041
|
|
| Estimated error at iter 100: 0.09569430
|
|
| Estimated error at iter 150: 0.03604781
|
|
| Estimated error at iter 200: 0.00708039
|
|
| Estimated error at iter 250: 0.00157457
|
|
! => CONVERGED at iter 300 with error= 0.00068343
|
|
|-------------------------------------------------------------
|
|
! k-point # 26: ( 0.6667, 1.1547, 0.3030), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
| Hilbert space is saturated
|
|
| xniter is set equal to 1149
|
|
| Increase kinetic-energy cutoff in your SCF calculation!
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14416648E-01
|
|
| Estimated error at iter 50: 1.00286783
|
|
| Estimated error at iter 100: 0.10247801
|
|
| Estimated error at iter 150: 0.02189018
|
|
| Estimated error at iter 200: 0.01047071
|
|
| Estimated error at iter 250: 0.00292569
|
|
| Estimated error at iter 300: 0.00109949
|
|
! => CONVERGED at iter 350 with error= 0.00055052
|
|
|-------------------------------------------------------------
|
|
! k-point # 27: ( 0.6667, 1.1547, 0.6060), 0.0741, 1
|
|
|-------------------------------------------------------------
|
|
| Hilbert space is saturated
|
|
| xniter is set equal to 1149
|
|
| Increase kinetic-energy cutoff in your SCF calculation!
|
|
okvan= T
|
|
| Norm of the initial Lanczos vector: 0.14416648E-01
|
|
| Estimated error at iter 50: 1.00286783
|
|
| Estimated error at iter 100: 0.10247801
|
|
| Estimated error at iter 150: 0.02201015
|
|
| Estimated error at iter 200: 0.01014338
|
|
| Estimated error at iter 250: 0.00302164
|
|
| Estimated error at iter 300: 0.00120215
|
|
! => CONVERGED at iter 350 with error= 0.00055068
|
|
|
|
Results of STEP 1 successfully written in x_save_file
|
|
x_save_file name:
|
|
-> SiO2.xspectra_dip_restart_2.sav
|
|
x_save_file version: 2
|
|
|
|
... End STEP 1 ...
|
|
|
|
... Begin STEP 2 ...
|
|
|
|
The spectrum is calculated using the following parameters:
|
|
energy-zero of the spectrum [eV]: 6.4758
|
|
the occupied states are cut
|
|
xemin [eV]: -10.00
|
|
xemax [eV]: 100.00
|
|
xnepoint: 1000
|
|
constant broadening parameter [eV]: 0.800
|
|
Core level energy [eV]: -1839.
|
|
(from electron binding energy of neutral atoms in X-ray data booklet)
|
|
|
|
Cross-section successfully written in xanes.dat
|
|
|
|
... End STEP 2 ...
|
|
|
|
xanes : 58.75s CPU 59.26s WALL ( 1 calls)
|
|
|
|
-------------------------------------------------------------------------
|
|
END JOB XSpectra
|
|
-------------------------------------------------------------------------
|
|
|