quantum-espresso/QHA/SRC/Mean_square_displacement.f90

226 lines
5.4 KiB
Fortran

!
! Copyright (C) 2006 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
! Eyvaz Isaev, Copyright 2005-2008
!
! Department of Physics, Chemistry, and Biophysics (IFM), Linkoping University, Sweden
!
! Theoretical Physics Department, Moscow State Institute of Steel and Alloys, Russia
!
! Materials Theory Group, Institute of Physics and Materials Science, Uppsala University, Sweden
!
! isaev@ifm.liu.se
! eyvaz_isaev@yahoo.com
!
! Given projected phonon DOS, calculates:
!
! u^2 - mean square displacement, in Ang^2,
! as well <(u_x^)2>, <(u_y)^2>, and <(u_z)^2>
!
! Parameters used
! T in K,
! phonon DOS has the norm of 3*N
!
! Output file is suitable for visualization using Gnuplot (www.gnuplot.info) or Xmgace (Xmgr).
!
! Keep in mind: preliminary u^2 estimations are for simple metals or semiconductors (one atom type only!)
! If Theta_D is unknown, then set up Theta_D=0 or negatve, so that preliminary u^2 estimations are avoided.
! High temperature estimaton for u^2 is given at room temperature
!
program mean_square_displacement
!
implicit none
integer, parameter:: ndivx=10000
real(kind=8) :: dos(ndivx),nu(ndivx),a1,a2,a3
real(kind=8) :: pdos(ndivx),gx(ndivx),gy(ndivx),gz(ndivx)
real(kind=8) :: de, emax, norm,norm_tot
!
real(kind=8) :: q1,q2,q3
integer :: T_start, T_end, T_delta, T300
real(kind=8) :: x, coth, sN,s, norm1, norm_partial
real(kind=8) :: Theta_D,prefactor,amass
real(kind=8) :: u2, u2_x, u2_y, u2_z, T, factor2
integer :: i,ndiv,n
character(len=80) :: filename, outfile
character(len=1) :: dummy
!
coth(x)=(dexp(x)+dexp(-x))/(dexp(x) - dexp(-x))
!
!
! Used constants
a1=0.5d0/13.6058d0/8065.5d0
a2=8.617d-5/13.6058d0
a3=1.0d0/8065.5d0/8.617d-5
read(5,'(a)') filename
! read(5,'(a)') outfile
read(5, *) T_start, T_end, T_delta
read(5, *) amass
! read(5, *) amass, Theta_D
open(unit=1,file=filename)
read (1,*)
read (1,*) dummy, ndiv, emax, de
if (ndiv.gt.ndivx) stop ' ndiv too large'
print*, 'ndiv from file ===', ndiv
!
! Safe reading of input dos file
i=1
2 read(1,*,end=98) nu(i),dos(i),pdos(i),gx(i),gy(i),gz(i)
i=i+1
goto 2
!
98 continue
close(1)
!
ndiv = i - 1
!
print*, 'ndiv===', ndiv
norm1=0.
do i=2,ndiv-3,3
norm1 = norm1 + 3*pdos(i)+3*pdos(i+1)+2*pdos(i+2)
enddo
norm_partial=norm1*de*3/8
print*, 'norm_partial==', norm_partial
! if(Theta_D.gt.0.d0) then
!
! if(Theta_D.lt.100.d0) then
! write(6,'("Unlikely, the Debye temperature is lower than 100K")')
! write(6,'("So, be careful about low and high temperature estimations for MSD")')
! endif
!
! Some estimations before theoretical calculations
! This part can be helpful for estimation purposes, so, I leave this part.
!
! Low-Temperature limit, for test case
! See Reissland's textbook "The physics of phonons"
!
! Al
! amass=26.98
! Theta_D=400
!
! Si
! amass=14.01
! Theta_D=2000
!
! Cu
! amass=14.01
! Theta_D=315
!
! Pd
! amass=106.42
! Theta_D=275
!
! Pa
! amass=231
! Theta_D=175
!
! prefactor=9*1.0545**2/(4*1.66053886*1.3804)
! u2=prefactor*100/amass/Theta_D
!
! print*, '# Low temperature u^2===', u2
!
! High Temperature limit (at room temperature), for test case
!
! T300=300
! prefactor=9*1.0545**2/(1.66053886*1.3804)
! u2=prefactor*100*T300/amass/Theta_D**2
!
! print*, '# High temperature u^2(300K)===', u2
!
! else
!
! write(6,'("# Preliminary Low and High temperature u^2 estimations are not calculated")')
!
! endif
! open(unit=1,file=outfile,status='unknown')
open(unit=9,file='Displacements',status='unknown')
write(9,'(56("#"))')
write(9,'("# T in K, u^2, u^2_x, u^2_y, u^2_z are in Ang^2")')
write(9,'("# u^2 = u^2_x + u^2_y + u^2_z ")')
write(9,'("# T u^2 u^2_x u^2_y u^2_z")')
write(9,'(56("#"))')
!
do T=T_start,T_end,T_delta
!
norm=0.d0
!
u2=0
u2_x=0
u2_y=0
u2_z=0
do i=2,ndiv-3,3
norm = norm + 3*dos(i)+3*dos(i+1)+2*dos(i+2)
q1=0.5*a3*nu(i)/T
q2=0.5*a3*nu(i+1)/T
q3=0.5*a3*nu(i+2)/T
! Mean square displacements
!
u2 = u2 + 3*pdos(i)*coth(q1)/q1 + &
& 3*pdos(i+1)*coth(q2)/q2 + &
& 2*pdos(i+2)*coth(q3)/q3
!!
u2_x = u2_x + 3*gx(i)*coth(q1)/q1 + &
& 3*gx(i+1)*coth(q2)/q2 + &
& 2*gx(i+2)*coth(q3)/q3
!
u2_y = u2_y + 3*gy(i)*coth(q1)/q1 + &
& 3*gy(i+1)*coth(q2)/q2 + &
& 2*gy(i+2)*coth(q3)/q3
!
u2_z = u2_z + 3*gz(i)*coth(q1)/q1 + &
& 3*gz(i+1)*coth(q2)/q2 + &
& 2*gz(i+2)*coth(q3)/q3
enddo
norm_tot=norm*de*3/8
prefactor=1.0545**2*100/(1.66053886*1.3804)/4
factor2=1.
! if(dabs(norm_par/3 - 1).gt.0.1) factor2=2.
! print*, 'factor2===', factor2
u2=prefactor*u2*de*3/8/amass/T/factor2
! u2=prefactor*u2*de*3/8/amass/T
u2_x=prefactor*u2_x*de*3/8/amass/T/factor2
u2_y=prefactor*u2_y*de*3/8/amass/T/factor2
u2_z=prefactor*u2_z*de*3/8/amass/T/factor2
!
write(9,'(f8.2,4f12.6)') T, u2, u2_x,u2_y,u2_z
enddo
!
!10 close(1)
close(9)
!
stop
end program mean_square_displacement
!