mirror of https://gitlab.com/QEF/q-e.git
474 lines
20 KiB
Plaintext
474 lines
20 KiB
Plaintext
|
|
Program BANDS v.6.0 (svn rev. 13286) starts on 7Feb2017 at 16:10:16
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 2 processors
|
|
R & G space division: proc/nbgrp/npool/nimage = 2
|
|
|
|
Reading data from directory:
|
|
/home/pietro/espresso-svn/tempdir/Pt.save
|
|
|
|
Info: using nr1, nr2, nr3 values from input
|
|
|
|
Info: using nr1, nr2, nr3 values from input
|
|
|
|
IMPORTANT: XC functional enforced from input :
|
|
Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0)
|
|
Any further DFT definition will be discarded
|
|
Please, verify this is what you really want
|
|
|
|
|
|
Parallelization info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Min 237 111 42 3426 1114 229
|
|
Max 238 112 43 3429 1115 230
|
|
Sum 475 223 85 6855 2229 459
|
|
|
|
|
|
Check: negative/imaginary core charge= -0.000004 0.000000
|
|
high-symmetry point: 0.0000 0.0000 0.0000 x coordinate 0.0000
|
|
high-symmetry point: 1.0000 0.0000 0.0000 x coordinate 0.1000
|
|
high-symmetry point: 0.4000 0.2000 0.1000 x coordinate 0.1000
|
|
high-symmetry point: 0.4000 0.4000 0.0000 x coordinate 0.3236
|
|
high-symmetry point: 0.4000 0.4000 0.4000 x coordinate 0.7236
|
|
high-symmetry point: 0.5000 0.5000 0.5000 x coordinate 0.8968
|
|
high-symmetry point: 0.7500 0.7500 0.0000 x coordinate 1.5092
|
|
|
|
Plottable bands (eV) written to file pt.band.gnu
|
|
Bands written to file pt.band
|
|
|
|
**************************************************************************
|
|
|
|
xk=( 0.00000, 0.00000, 0.00000 )
|
|
|
|
double point group O_h (m-3m)
|
|
there are 16 classes and 6 irreducible representations
|
|
the character table:
|
|
|
|
E -E 8C3 -8C3 3C2 6C4 -6C4 6C2' i -i 8S6 -8S6
|
|
-3C2 -6C2'
|
|
G_6+ 2.00 -2.00 1.00 -1.00 0.00 1.41 -1.41 0.00 2.00 -2.00 1.00 -1.00
|
|
G_7+ 2.00 -2.00 1.00 -1.00 0.00 -1.41 1.41 0.00 2.00 -2.00 1.00 -1.00
|
|
G_8+ 4.00 -4.00 -1.00 1.00 0.00 0.00 0.00 0.00 4.00 -4.00 -1.00 1.00
|
|
G_6- 2.00 -2.00 1.00 -1.00 0.00 1.41 -1.41 0.00 -2.00 2.00 -1.00 1.00
|
|
G_7- 2.00 -2.00 1.00 -1.00 0.00 -1.41 1.41 0.00 -2.00 2.00 -1.00 1.00
|
|
G_8- 4.00 -4.00 -1.00 1.00 0.00 0.00 0.00 0.00 -4.00 4.00 1.00 -1.00
|
|
|
|
3s_h 6S4 -6S4 6s_d
|
|
-3s_h -6s_d
|
|
G_6+ 0.00 1.41 -1.41 0.00
|
|
G_7+ 0.00 -1.41 1.41 0.00
|
|
G_8+ 0.00 0.00 0.00 0.00
|
|
G_6- 0.00 -1.41 1.41 0.00
|
|
G_7- 0.00 1.41 -1.41 0.00
|
|
G_8- 0.00 0.00 0.00 0.00
|
|
|
|
the symmetry operations in each class and the name of the first element:
|
|
|
|
E 1
|
|
|
|
-E -1
|
|
|
|
8C3 17 19 20 18 24 21 22 23
|
|
|
|
-8C3 -17 -19 -20 -18 -24 -21 -22 -23
|
|
|
|
3C2 -3C2 2 -2 4 -4 3 -3
|
|
|
|
6C4 7 8 15 16 12 11
|
|
|
|
-6C4 -7 -8 -15 -16 -12 -11
|
|
|
|
6C2'-6C2' 5 -5 -6 6 14 -13 -14 13 10 -9 -10 9
|
|
|
|
i 25
|
|
|
|
-i -25
|
|
|
|
8S6 41 43 44 42 48 45 46 47
|
|
|
|
-8S6 -41 -43 -44 -42 -48 -45 -46 -47
|
|
|
|
3s_h-3s_h 26 -26 28 -28 27 -27
|
|
|
|
6S4 31 32 39 40 36 35
|
|
|
|
-6S4 -31 -32 -39 -40 -36 -35
|
|
|
|
6s_d-6s_d 29 -29 -30 30 38 -37 -38 37 34 -33 -34 33
|
|
|
|
|
|
Band symmetry, O_h (m-3m) double point group:
|
|
|
|
e( 1 - 2) = 7.27276 eV 2 --> G_6+
|
|
e( 3 - 6) = 13.29709 eV 4 --> G_8+
|
|
e( 7 - 8) = 14.29074 eV 2 --> G_7+
|
|
e( 9 - 12) = 16.11861 eV 4 --> G_8+
|
|
e( 13 - 14) = 34.84033 eV 2 --> G_7-
|
|
e( 15 - 16) = 38.36118 eV 2 --> G_6-
|
|
e( 17 - 18) = 39.65410 eV 2 --> ?
|
|
|
|
**************************************************************************
|
|
|
|
**************************************************************************
|
|
|
|
xk=( 0.10000, 0.00000, 0.00000 )
|
|
|
|
double point group C_4v (4mm)
|
|
there are 7 classes and 2 irreducible representations
|
|
the character table:
|
|
|
|
E -E 2C4 -2C4 C2 2s_v 2s_d
|
|
-C2 -2s_v -2s_d
|
|
G_6 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00
|
|
G_7 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00
|
|
|
|
the symmetry operations in each class and the name of the first element:
|
|
|
|
E 1
|
|
|
|
-E -1
|
|
|
|
2C4 3 4
|
|
|
|
-2C4 -3 -4
|
|
|
|
C2 -C2 2 -2
|
|
|
|
2s_v-2s_v 5 -5 6 -6
|
|
|
|
2s_d-2s_d 7 -7 -8 8
|
|
|
|
|
|
Band symmetry, C_4v (4mm) double point group:
|
|
|
|
e( 1 - 2) = 7.40604 eV 2 --> G_6 D_6
|
|
e( 3 - 4) = 13.26509 eV 2 --> G_7 D_7
|
|
e( 5 - 6) = 13.35397 eV 2 --> G_6 D_6
|
|
e( 7 - 8) = 14.31452 eV 2 --> G_7 D_7
|
|
e( 9 - 10) = 16.03302 eV 2 --> G_6 D_6
|
|
e( 11 - 12) = 16.15011 eV 2 --> G_7 D_7
|
|
e( 13 - 14) = 35.02258 eV 2 --> G_7 D_7
|
|
e( 15 - 16) = 38.07556 eV 2 --> G_6 D_6
|
|
e( 17 - 18) = 39.12531 eV 2 --> G_6 D_6
|
|
|
|
**************************************************************************
|
|
|
|
**************************************************************************
|
|
|
|
xk=( 1.00000, 0.00000, 0.00000 )
|
|
|
|
double point group D_4h(4/mmm)
|
|
there are 14 classes and 4 irreducible representations
|
|
the character table:
|
|
|
|
E -E 2C4 -2C4 C2 2C2' 2C2'' i -i 2S4 -2S4 s_h
|
|
-C2 -2C2' -2C2' -s_h
|
|
G_6+ 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 2.00 -2.00 1.41 -1.41 0.00
|
|
G_7+ 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 2.00 -2.00 -1.41 1.41 0.00
|
|
G_6- 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 -2.00 2.00 -1.41 1.41 0.00
|
|
G_7- 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 -2.00 2.00 1.41 -1.41 0.00
|
|
|
|
2s_v 2s_d
|
|
-2s_v -2s_d
|
|
G_6+ 0.00 0.00
|
|
G_7+ 0.00 0.00
|
|
G_6- 0.00 0.00
|
|
G_7- 0.00 0.00
|
|
|
|
the symmetry operations in each class and the name of the first element:
|
|
|
|
E 1
|
|
|
|
-E -1
|
|
|
|
2C4 7 8
|
|
|
|
-2C4 -7 -8
|
|
|
|
C2 -C2 4 -4
|
|
|
|
2C2'-2C2' 2 -2 3 -3
|
|
|
|
2C2''-2C2' 5 6 -6 -5
|
|
|
|
i 9
|
|
|
|
-i -9
|
|
|
|
2S4 15 16
|
|
|
|
-2S4 -15 -16
|
|
|
|
s_h -s_h 12 -12
|
|
|
|
2s_v-2s_v 10 -10 11 -11
|
|
|
|
2s_d-2s_d 13 14 -14 -13
|
|
|
|
|
|
Band symmetry, D_4h(4/mmm) double point group:
|
|
|
|
e( 1 - 2) = 10.44152 eV 2 --> G_6+ M_6+
|
|
e( 3 - 4) = 10.87289 eV 2 --> G_7+ M_7+
|
|
e( 5 - 6) = 17.37370 eV 2 --> G_7+ M_7+
|
|
e( 7 - 8) = 17.67676 eV 2 --> G_6+ M_6+
|
|
e( 9 - 10) = 18.65866 eV 2 --> G_7+ M_7+
|
|
e( 11 - 12) = 19.10272 eV 2 --> G_6- M_6-
|
|
e( 13 - 14) = 26.26864 eV 2 --> G_6+ M_6+
|
|
e( 15 - 16) = 28.73755 eV 2 --> G_6- M_6-
|
|
e( 17 - 18) = 30.28077 eV 2 --> G_7- M_7-
|
|
|
|
**************************************************************************
|
|
|
|
**************************************************************************
|
|
|
|
xk=( 0.40000, 0.20000, 0.10000 )
|
|
|
|
double point group C_1 (1)
|
|
there are 2 classes and 1 irreducible representations
|
|
the character table:
|
|
|
|
E -E
|
|
|
|
G_2 1.00 -1.00
|
|
|
|
the symmetry operations in each class and the name of the first element:
|
|
|
|
E 1
|
|
|
|
-E -1
|
|
|
|
|
|
Band symmetry, C_1 (1) double point group:
|
|
|
|
e( 1 - 2) = 9.65964 eV 2 --> 2 G_2
|
|
e( 3 - 4) = 12.67626 eV 2 --> 2 G_2
|
|
e( 5 - 6) = 13.67312 eV 2 --> 2 G_2
|
|
e( 7 - 8) = 14.94324 eV 2 --> 2 G_2
|
|
e( 9 - 10) = 15.71767 eV 2 --> 2 G_2
|
|
e( 11 - 12) = 16.93251 eV 2 --> 2 G_2
|
|
e( 13 - 14) = 32.05025 eV 2 --> 2 G_2
|
|
e( 15 - 16) = 35.78180 eV 2 --> 2 G_2
|
|
e( 17 - 18) = 37.60567 eV 2 --> 2 G_2
|
|
|
|
**************************************************************************
|
|
|
|
**************************************************************************
|
|
|
|
xk=( 0.40000, 0.40000, 0.00000 )
|
|
|
|
double point group C_2v (mm2)
|
|
there are 5 classes and 1 irreducible representations
|
|
the character table:
|
|
|
|
E -E C2 s_v s_v'
|
|
-C2 -s_v -s_v'
|
|
G_5 2.00 -2.00 0.00 0.00 0.00
|
|
|
|
the symmetry operations in each class and the name of the first element:
|
|
|
|
E 1
|
|
|
|
-E -1
|
|
|
|
C2 -C2 2 -2
|
|
|
|
s_v -s_v 3 -3
|
|
|
|
s_v'-s_v' 4 -4
|
|
|
|
|
|
Band symmetry, C_2v (mm2) double point group:
|
|
|
|
e( 1 - 2) = 10.63620 eV 2 --> G_5 D_5
|
|
e( 3 - 4) = 12.67712 eV 2 --> G_5 D_5
|
|
e( 5 - 6) = 13.51623 eV 2 --> G_5 D_5
|
|
e( 7 - 8) = 15.02015 eV 2 --> G_5 D_5
|
|
e( 9 - 10) = 15.45417 eV 2 --> G_5 D_5
|
|
e( 11 - 12) = 18.07477 eV 2 --> G_5 D_5
|
|
e( 13 - 14) = 30.35053 eV 2 --> G_5 D_5
|
|
e( 15 - 16) = 32.89509 eV 2 --> G_5 D_5
|
|
e( 17 - 18) = 37.60605 eV 2 --> G_5 D_5
|
|
|
|
**************************************************************************
|
|
|
|
**************************************************************************
|
|
|
|
xk=( 0.40000, 0.40000, 0.40000 )
|
|
|
|
double point group C_3v (3m)
|
|
there are 6 classes and 3 irreducible representations
|
|
the character table:
|
|
|
|
E -E 2C3 -2C3 3s_v -3s_v
|
|
|
|
G_4 2.00 -2.00 1.00 -1.00 0.00 0.00
|
|
G_5 1.00 -1.00 -1.00 1.00 0.00 0.00
|
|
G_6 1.00 -1.00 -1.00 1.00 0.00 0.00
|
|
|
|
imaginary part
|
|
|
|
E -E 2C3 -2C3 3s_v -3s_v
|
|
|
|
G_4 0.00 0.00 0.00 0.00 0.00 0.00
|
|
G_5 0.00 0.00 0.00 0.00 1.00 -1.00
|
|
G_6 0.00 0.00 0.00 0.00 -1.00 1.00
|
|
|
|
the symmetry operations in each class and the name of the first element:
|
|
|
|
E 1
|
|
|
|
-E -1
|
|
|
|
2C3 2 3
|
|
|
|
-2C3 -2 -3
|
|
|
|
3s_v 4 5 -6
|
|
|
|
3s_v 6 -4 -5
|
|
|
|
|
|
Band symmetry, C_3v (3m) double point group:
|
|
|
|
e( 1 - 2) = 10.15523 eV 2 --> G_4 L_6
|
|
e( 3 - 4) = 13.22653 eV 2 --> G_5 L_4
|
|
e( 3 - 4) = 13.22653 eV 2 --> G_6 L_5
|
|
e( 5 - 6) = 14.27622 eV 2 --> G_4 L_6
|
|
e( 7 - 8) = 15.38915 eV 2 --> G_4 L_6
|
|
e( 9 - 10) = 17.06727 eV 2 --> G_4 L_6
|
|
e( 11 - 12) = 17.63151 eV 2 --> G_5 L_4
|
|
e( 11 - 12) = 17.63151 eV 2 --> G_6 L_5
|
|
e( 13 - 14) = 25.37076 eV 2 --> G_4 L_6
|
|
e( 15 - 16) = 34.29249 eV 2 --> G_4 L_6
|
|
e( 17 - 18) = 37.68814 eV 2 --> G_4 L_6
|
|
|
|
**************************************************************************
|
|
|
|
**************************************************************************
|
|
|
|
xk=( 0.50000, 0.50000, 0.50000 )
|
|
|
|
double point group D_3d (-3m)
|
|
there are 12 classes and 6 irreducible representations
|
|
the character table:
|
|
|
|
E -E 2C3 -2C3 3C2' -3C2' i -i 2S6 -2S6 3s_v -3s_v
|
|
|
|
G_4+ 2.00 -2.00 1.00 -1.00 0.00 0.00 2.00 -2.00 1.00 -1.00 0.00 0.00
|
|
G_5+ 1.00 -1.00 -1.00 1.00 0.00 0.00 1.00 -1.00 -1.00 1.00 0.00 0.00
|
|
G_6+ 1.00 -1.00 -1.00 1.00 0.00 0.00 1.00 -1.00 -1.00 1.00 0.00 0.00
|
|
G_4- 2.00 -2.00 1.00 -1.00 0.00 0.00 -2.00 2.00 -1.00 1.00 0.00 0.00
|
|
G_5- 1.00 -1.00 -1.00 1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 0.00 0.00
|
|
G_6- 1.00 -1.00 -1.00 1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 0.00 0.00
|
|
|
|
imaginary part
|
|
|
|
E -E 2C3 -2C3 3C2' -3C2' i -i 2S6 -2S6 3s_v -3s_v
|
|
|
|
G_4+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
|
|
G_5+ 0.00 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 1.00 -1.00
|
|
G_6+ 0.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 -1.00 1.00
|
|
G_4- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
|
|
G_5- 0.00 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 -1.00 1.00
|
|
G_6- 0.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 1.00 -1.00
|
|
|
|
the symmetry operations in each class and the name of the first element:
|
|
|
|
E 1
|
|
|
|
-E -1
|
|
|
|
2C3 5 6
|
|
|
|
-2C3 -5 -6
|
|
|
|
3C2' 2 -4 3
|
|
|
|
3C2' 4 -3 -2
|
|
|
|
i 7
|
|
|
|
-i -7
|
|
|
|
2S6 11 12
|
|
|
|
-2S6 -11 -12
|
|
|
|
3s_v 8 -10 9
|
|
|
|
3s_v 10 -9 -8
|
|
|
|
|
|
Band symmetry, D_3d (-3m) double point group:
|
|
|
|
e( 1 - 2) = 10.17386 eV 2 --> G_4+ L_6+
|
|
e( 3 - 4) = 13.14181 eV 2 --> G_5+ L_4+
|
|
e( 3 - 4) = 13.14181 eV 2 --> G_6+ L_5+
|
|
e( 5 - 6) = 14.15813 eV 2 --> G_4+ L_6+
|
|
e( 7 - 8) = 16.90339 eV 2 --> G_4- L_6-
|
|
e( 9 - 10) = 17.29895 eV 2 --> G_4+ L_6+
|
|
e( 11 - 12) = 17.96293 eV 2 --> G_5+ L_4+
|
|
e( 11 - 12) = 17.96293 eV 2 --> G_6+ L_5+
|
|
e( 13 - 14) = 23.35729 eV 2 --> G_4+ L_6+
|
|
e( 15 - 16) = 33.87802 eV 2 --> G_4- L_6-
|
|
e( 17 - 18) = 36.95412 eV 2 --> G_4- L_6-
|
|
|
|
**************************************************************************
|
|
|
|
**************************************************************************
|
|
|
|
xk=( 0.75000, 0.75000, 0.00000 )
|
|
|
|
double point group C_2v (mm2)
|
|
there are 5 classes and 1 irreducible representations
|
|
the character table:
|
|
|
|
E -E C2 s_v s_v'
|
|
-C2 -s_v -s_v'
|
|
G_5 2.00 -2.00 0.00 0.00 0.00
|
|
|
|
the symmetry operations in each class and the name of the first element:
|
|
|
|
E 1
|
|
|
|
-E -1
|
|
|
|
C2 -C2 2 -2
|
|
|
|
s_v -s_v 3 -3
|
|
|
|
s_v'-s_v' 4 -4
|
|
|
|
|
|
Band symmetry, C_2v (mm2) double point group:
|
|
|
|
e( 1 - 2) = 11.23668 eV 2 --> G_5 D_5
|
|
e( 3 - 4) = 11.98596 eV 2 --> G_5 D_5
|
|
e( 5 - 6) = 14.56655 eV 2 --> G_5 D_5
|
|
e( 7 - 8) = 16.24876 eV 2 --> G_5 D_5
|
|
e( 9 - 10) = 17.53286 eV 2 --> G_5 D_5
|
|
e( 11 - 12) = 23.32611 eV 2 --> G_5 D_5
|
|
e( 13 - 14) = 24.22459 eV 2 --> G_5 D_5
|
|
e( 15 - 16) = 27.55338 eV 2 --> G_5 D_5
|
|
e( 17 - 18) = 32.69166 eV 2 --> G_5 D_5
|
|
|
|
**************************************************************************
|
|
|
|
BANDS : 2.93s CPU 2.99s WALL
|
|
|
|
|
|
This run was terminated on: 16:10:19 7Feb2017
|
|
|
|
=------------------------------------------------------------------------------=
|
|
JOB DONE.
|
|
=------------------------------------------------------------------------------=
|