mirror of https://gitlab.com/QEF/q-e.git
273 lines
15 KiB
TeX
273 lines
15 KiB
TeX
%
|
|
% Copyright (C) 2006 Andrea Benassi
|
|
% This file is distributed under the terms of the
|
|
% GNU General Public License. See the file `License'
|
|
% in the root directory of the present distribution,
|
|
% or http://www.gnu.org/copyleft/gpl.txt .
|
|
%
|
|
\documentclass[twocolumn]{article}
|
|
\usepackage[english]{babel}
|
|
\usepackage[centertags,intlimits]{amsmath}
|
|
\usepackage{amssymb}
|
|
\usepackage{verbatim}
|
|
\begin{document}
|
|
\begin{titlepage}
|
|
\Huge
|
|
\begin{center}
|
|
$PW_{SCF}$'s epsilon.x user's manual\\[4.5cm]
|
|
\normalsize
|
|
\vspace{10.5cm}
|
|
\textbf{Manual Author:}
|
|
\emph{Andrea Benassi}$^{1,2}$\\[0.3cm]
|
|
\textbf{Code Developers:}
|
|
\emph{Andrea Benassi$^{1,2}$, Andrea Ferretti$^{1,2}$, Carlo Cavazzoni$^{2,3}$}\\[1cm]
|
|
$^{1}$ \emph{Physics Department, Universit\'a degli Studi di Modena e Reggio Emilia,} www.fisica.unimore.it\\
|
|
$^{2}$ \emph{INFM/S$^{3}$ (Nanostructure and Biosystem at Surfaces),} www.s3.infm.it\\
|
|
$^{3}$ \emph{High Performance Computing Department, CINECA Consorzio Interuniversitario,} www.cineca.it\\
|
|
\end{center}
|
|
\end{titlepage}
|
|
\newpage
|
|
\section{Introduction}
|
|
Epsilon.x is a post processing code of $PW_{SCF}$. Starting from DFT eigenvalues and eigenvectors,
|
|
epsilon.x provides the real and imaginary parts of the dielectric tensor or the joint density of states, it works both in serial and
|
|
parallel mode, also pool parallelization is supported.
|
|
Epsilon.x doesn't support the reduction of the k-points grid into the irreducible Brillouin zone, so the previous PW runs must be
|
|
performed with a uniform k-points grid and all k-points weights must be equal to each other, i.e. in the k-points card the k-points
|
|
coordinates must be given manually in \emph{crystal} or \emph{alat} or \emph{bohr}, but not with the \emph{automatic} option. Also the
|
|
auto-symmetrization of k-points grid can produce a non uniform distribution of k-points weights, in order to avoid this
|
|
PW's behavior the variable NOSYM must be set .TRUE. disabling auto-symmetrization.
|
|
\section{Input file}
|
|
When executed, epsilon.x reads an input file from standard input, this file contains two Fortran namelists
|
|
(value associated to each variable is the default one):
|
|
\begin{verbatim}
|
|
&inputpp
|
|
outdir='./'
|
|
prefix='pwscf'
|
|
calculation='eps'
|
|
/
|
|
&energy_grid
|
|
smeartype='gauss'
|
|
intersmear=0.136d0
|
|
intrasmear=0.0d0
|
|
wmax=30.0d0
|
|
wmin=0.0d0
|
|
nw=600
|
|
shift=0.0d0
|
|
/
|
|
\end{verbatim}
|
|
the first two characters are the location and name of the output files from the previous PW runs. \emph{calculation}
|
|
select the kind of calculation to be performed by epsilon.x, actually the following calculation are implemented:
|
|
\begin{itemize}
|
|
\item \emph{eps}: dielectric tensor calculation, in addition to the standard output the code produces the four files
|
|
\emph{epsr.dat}, \emph{epsi.dat}, \emph{eels.dat} and \emph{ieps.dat}. The first two contain the real and imaginary
|
|
parts of the dielectric
|
|
tensor diagonal components $\epsilon_{1_{\alpha,\alpha}}(\omega)$ e $\epsilon_{2_{\alpha,\alpha}}(\omega)$,
|
|
as a function of frequency (in eV). The third file contains the electron energy loss spectrum calculated from the diagonal
|
|
elements of dielectric tensor and the last one contains the diagonal components of
|
|
dielectric tensor calculated on the imaginary axis of frequency (via London transformation)
|
|
$\epsilon_{\alpha,\alpha}(i\omega)$. If the PW calculations have been performed in collinear spin mode the previous files
|
|
contain the sum of spin up and spin down contribution, other files with prefix \emph{u-} or \emph{d-} are created containing
|
|
the same quantities for spin up or spin down separately.
|
|
\item \emph{jdos}: joint density of state (JDOS) calculation.
|
|
In addition to the standard output the code produces the file
|
|
\emph{jdos.dat}, containing the JDOS (in eV$^{-1}$) as a function
|
|
of frequency (in eV). The JDOS is normalized to 1. If the PW
|
|
calculations have been performed in collinear spin mode,
|
|
\emph{jdos.dat} contains separately the spin up and spin down JDOS.
|
|
\item \emph{offdiag}: calculation of diagonal and off-diagonal components of dielectric tensor. In addition
|
|
to the standard output the code produces one file for each component of the dielectric tensor (i.e.
|
|
\emph{epsxy.dat}), each file contains real and imaginary part of the tensor component.
|
|
\item \emph{occ}: calculation of occupation factors and its first derivative, results are written on
|
|
\emph{occupations.dat}. In metallic systems it is highly recommended to perform this calculation before
|
|
anything else.
|
|
Plotting this file it is easy to see if the chosen broadening parameter and k points number
|
|
are enough to have a good sampling of the fermi surface.
|
|
\end{itemize}
|
|
\emph{smeartype} select the kind of broadening for the plot of JDOS, it can be both
|
|
\emph{gauss} or \emph{lorentz} for a Gaussian or Lorentzian broadening. \emph{intersmear} is the broadening
|
|
parameter (in eV) for the interband contribution,
|
|
it will be the Gaussian or Lorentzian broadening parameter in the case of JDOS
|
|
or the
|
|
Drude-Lorentz broadening parameter for the dielectric tensor calculation.
|
|
\emph{intrasmear} is the broadening parameter for the intraband, i.e. metal Drude like term (again in eV),
|
|
the intraband contribution is calculated only if a Gaussian broadening or tetrahedron method it's been
|
|
applied in PW calculations.
|
|
The desired functions will be calculated in a frequency interval $\big[$-\emph{wmax},\emph{wmax}$\big]$ and \emph{nw}
|
|
is the number of points of the frequency mesh, \emph{wmax} is expected to be in eV. Finally \emph{shift} is the number
|
|
of eV for an optional rigid shift of the imaginary part of the dielectric function.
|
|
|
|
\section{Joint density of states}
|
|
The joint density of state (JDOS) is defined has:
|
|
\begin{displaymath}
|
|
n(\omega)=\sum_{\sigma}\sum_{n\in V}\sum_{n'\in C}\frac{\Omega}{(2\pi)^3}\int d^3\textbf{k}\delta(E_{\textbf{k},n'}-E_{\textbf{k},n}
|
|
-\hbar\omega)
|
|
\end{displaymath}
|
|
or alternatively:
|
|
\begin{equation}
|
|
n(\omega)=\sum_{n}\sum_{n'}\frac{\Omega}{(2\pi)^3}\int d^3\textbf{k}\delta(E_{\textbf{k},n'}-E_{\textbf{k},n}
|
|
-\hbar\omega)...
|
|
\label{imp2}
|
|
\end{equation}
|
|
\begin{displaymath}
|
|
...f(E_{\textbf{k},n})[2-f(E_{\textbf{k},n'})]/2
|
|
\end{displaymath}
|
|
or finally:
|
|
\begin{equation}
|
|
n(\omega)=\sum_{n\in V}\sum_{n'\in C}\frac{\Omega}{(2\pi)^3}\int d^3\textbf{k}\delta(E_{\textbf{k},n'}-E_{\textbf{k},n}
|
|
-\hbar\omega)...
|
|
\label{imp}
|
|
\end{equation}
|
|
\begin{displaymath}
|
|
...[f(E_{\textbf{k},n})-f(E_{\textbf{k},n'})]
|
|
\end{displaymath}
|
|
were $\sigma$ is the spin component, $\Omega$ is the volume of the lattice cell, $n$ and $n'$ belong respectively to the
|
|
valence and conduction bands,
|
|
$E_{\textbf{k},n}$ are the eigenvalues of the Hamiltonian and $f(E_{\textbf{k},n})$ is the Fermi distribution function
|
|
that account for the occupation of the bands. In the last two notation the sum over spin values is included into
|
|
Fermi function whose normalization is two instead of one.
|
|
The Dirac Delta function it's numerically implemented by means of Lorentzian
|
|
or Gaussian functions normalized to one:
|
|
\begin{equation}
|
|
L(\omega)=\frac{\Gamma}{\pi\big[(E_{\textbf{k},n'}-E_{\textbf{k},n}-\hbar\omega)^2+\Gamma^2\big]}
|
|
\label{lor}
|
|
\end{equation}
|
|
\begin{equation}
|
|
G(\omega)=\frac{1}{\Gamma\sqrt{\pi}}e^{(E_{\textbf{k},n'}-E_{\textbf{k},n}-\hbar\omega)^2/\Gamma^2}
|
|
\label{gau}
|
|
\end{equation}
|
|
$\Gamma$ is the broadening parameter from the input file. The implemented formula is obtained substituting the
|
|
Dirac Delta function in (\ref{imp}) by (\ref{lor}) or (\ref{gau}) and substituting $\frac{\Omega}{(2\pi)^3}\int
|
|
d^3\textbf{k}$ by a simple sun over k-points.\\
|
|
Integrating analytically (\ref{imp}) one obtains:
|
|
\begin{eqnarray}
|
|
\sum_{\textbf{k}}\sum_{n}\sum_{n'}[f(E_{\textbf{k},n})-f(E_{\textbf{k},n'})]
|
|
\end{eqnarray}
|
|
so a division by this quantity is needed to renormalize to 1 the JDOS, the standard output file
|
|
contains a convergence check on this normalization. Note that in the case of
|
|
joint density of state the two kinds of broadening (\ref{lor}) and (\ref{gau}) are exactly equivalent.
|
|
|
|
\section{Dielectric tensor}
|
|
The imaginary part of the dielectric tensor $\epsilon_{2_{\alpha,\beta}}(\omega)$ can be viewed as a response function
|
|
that comes from a perturbation theory with adiabatic turning on:
|
|
\begin{displaymath}
|
|
\epsilon_{\alpha,\beta}(\omega)=1+\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,n'}\sum_{\textbf{k}}
|
|
\frac{\hat{\textbf{M}}_{\alpha,\beta}}{(E_{\textbf{k},n'}-E_{\textbf{k},n})^2}...
|
|
\end{displaymath}
|
|
\begin{displaymath}
|
|
...\Bigg\{\frac{f(E_{\textbf{k},n})}{E_{\textbf{k},n'}-E_{\textbf{k},n}+\hbar\omega+i\hbar\Gamma}+...
|
|
\end{displaymath}
|
|
\begin{equation}
|
|
...\frac{f(E_{\textbf{k},n})}{E_{\textbf{k},n'}-E_{\textbf{k},n}-\hbar\omega-i\hbar\Gamma}\Bigg\}
|
|
\end{equation}
|
|
where $\Gamma$ is the adiabatic parameter and, for the total energy conservation it must tend to zero.
|
|
This is the way in
|
|
which the Dirac Delta function appears and this means that every excited state has an infinite lifetime, i.e. is stationary.
|
|
\begin{displaymath}
|
|
\epsilon_{2_{\alpha,\beta}}(\omega)=\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,n'}\sum_{\textbf{k}}
|
|
\frac{\hat{\textbf{M}}_{\alpha,\beta} f(E_{\textbf{k},n})}{(E_{\textbf{k},n'}-E_{\textbf{k},n})^2}...
|
|
\end{displaymath}
|
|
\begin{equation}
|
|
...\bigg[\delta(E_{\textbf{k},n'}-E_{\textbf{k},n}+\hbar\omega)+\delta(E_{\textbf{k},n'}-
|
|
E_{\textbf{k},n}-\hbar\omega)\bigg]
|
|
\end{equation}
|
|
This situation is unphysical because the interaction with
|
|
electromagnetic field (even in the absence of photons, i.e. spontaneous emission) gives an intrinsic broadening to all exited
|
|
states, the lifetime is finite and $\Gamma$ must be greater than zero. In the limit of small but non vanishing $\Gamma$
|
|
the dielectric tensor turns into the Drude-Lorentz one:
|
|
\begin{displaymath}
|
|
\epsilon_{2_{\alpha,\beta}}(\omega)=\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,\textbf{k}}
|
|
\frac{d f(E_{\textbf{k},n})}{d E_{\textbf{k},n}}\frac{\eta \omega \hat{\textbf{M}}_{\alpha,\beta}}
|
|
{\omega^4+\eta^2 \omega^2}+...
|
|
\end{displaymath}
|
|
\begin{displaymath}
|
|
...+\frac{8 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n\ne n'}\sum_{\textbf{k}}
|
|
\frac{\hat{\textbf{M}}_{\alpha,\beta}}{E_{\textbf{k},n'}-E_{\textbf{k},n}}...
|
|
\end{displaymath}
|
|
\begin{equation}
|
|
...\frac{\Gamma \omega f(E_{\textbf{k},n})}{\big[(\omega_{\textbf{k},n'}-\omega_{\textbf{k},n})^2-\omega^2\big]^2+\Gamma^2\omega^2}
|
|
\end{equation}
|
|
while the real part comes from the Kramers-Kronig transformation:
|
|
\begin{equation}
|
|
\epsilon_{1_{\alpha,\beta}}(\omega)=1+\frac{2}{\pi}\int_{0}^{\infty}\frac{\omega' \epsilon_{2_{\alpha,\beta}}(\omega')}
|
|
{\omega'^{2}-\omega^{2}}d\omega'
|
|
\end{equation}
|
|
\begin{displaymath}
|
|
\epsilon_{1_{\alpha,\beta}}(\omega)=1-\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,\textbf{k}}
|
|
\frac{d f(E_{\textbf{k},n})}{d E_{\textbf{k},n}}\frac{\omega^2 \hat{\textbf{M}}_{\alpha,\beta}}
|
|
{\omega^4+\eta^2 \omega^2}+...
|
|
\end{displaymath}
|
|
\begin{displaymath}
|
|
...+\frac{8 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n\ne n'}\sum_{\textbf{k}}
|
|
\frac{\hat{\textbf{M}}_{\alpha,\beta}}{E_{\textbf{k},n'}-E_{\textbf{k},n}}...
|
|
\end{displaymath}
|
|
\begin{equation}
|
|
...\frac{\big[(\omega_{\textbf{k},n'}-\omega_{\textbf{k},n})^2-\omega^2\big]f(E_{\textbf{k},n})}
|
|
{\big[(\omega_{\textbf{k},n'}-\omega_{\textbf{k},n})^2
|
|
-\omega^2\big]^2+\Gamma^2\omega^2}
|
|
\end{equation}
|
|
finally the complex dielectric function is:
|
|
\begin{displaymath}
|
|
\epsilon_{\alpha,\beta}(\omega)=1-\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,\textbf{k}}
|
|
\frac{d f(E_{\textbf{k},n})}{d E_{\textbf{k},n}}\frac{\hat{\textbf{M}}_{\alpha,\beta}}
|
|
{\omega^2+i\eta\omega}+...
|
|
\end{displaymath}
|
|
\begin{displaymath}
|
|
...+\frac{8 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n'\ne n}\sum_{\textbf{k}}
|
|
\frac{\hat{\textbf{M}}_{\alpha,\beta}}{(E_{\textbf{k},n'}-E_{\textbf{k},n})}...
|
|
\end{displaymath}
|
|
\begin{displaymath}
|
|
...\frac{f(E_{\textbf{k},n})}{(\omega_{\textbf{k},n'}-\omega_{\textbf{k},n})^2+\omega^2+i\Gamma\omega}
|
|
\end{displaymath}
|
|
$\Gamma$ and $\eta$ are respectively \emph{intersmear} and \emph{intrasmear}.
|
|
The squared matrix elements are defined as follow:
|
|
\begin{equation}
|
|
\hat{\textbf{M}}_{\alpha,\beta}=\langle u_{\textbf{k},n'}\vert\hat{\textbf{p}}_{\alpha}\vert u_{\textbf{k},n}\rangle
|
|
\langle u_{\textbf{k},n}\vert\hat{\textbf{p}}_{\beta}^{\dagger}\vert u_{\textbf{k},n'}\rangle
|
|
\label{nos}
|
|
\end{equation}
|
|
\begin{equation}
|
|
\propto u_{\textbf{k},n'}^{\star}(\textbf{r})\frac{d}{d x_{\alpha}}u_{\textbf{k},n}(\textbf{r})
|
|
u_{\textbf{k},n}^{\star}(\textbf{r})\frac{d}{d x_{\beta}}u_{\textbf{k},n'}(\textbf{r})
|
|
\end{equation}
|
|
the double index reveals the tensorial nature of $\epsilon_{2}(\omega)$, while $\vert u_{\textbf{k},n}\rangle$ is a
|
|
factor of the single particle Bloch function obtained by the PW's DFT calculation.
|
|
In all the cases illustrated above the non-local contribution due to the pseudopotential is neglected, actually the
|
|
correction to the matrix element that take into account the non-local part of the Hamiltonian it's not implemented.
|
|
From the previous definition of the imaginary part of the dielectric function it is easy to see that even the local-field
|
|
contributions are not implemented.\\
|
|
PW works on a plane wave set so the Bloch functions of the matrix element (\ref{nos}) are decomposed as follow:
|
|
\begin{equation}
|
|
\vert \psi_{\textbf{k},n}\rangle=e^{i\textbf{G}\cdot\textbf{r}}u_{\textbf{k},n}=\frac{1}{\sqrt{V}}\sum_{\textbf{G}}a_{n,\textbf{k},\textbf{G}}
|
|
e^{i(\textbf{k}+\textbf{G})\cdot\textbf{r}}
|
|
\end{equation}
|
|
and consequently:
|
|
\begin{equation}
|
|
\hat{\textbf{M}}_{\alpha,\beta}=\bigg(\sum_{\textbf{G}}a^{\star}_{n,\textbf{k},\textbf{G}}a_{n',\textbf{k},\textbf{G}}
|
|
G_{\alpha}\bigg) \bigg(\sum_{\textbf{G}}a^{\star}_{n,\textbf{k},\textbf{G}}a_{n',\textbf{k},\textbf{G}}
|
|
G_{\beta}\bigg)
|
|
\end{equation}
|
|
defined in this way the matrix element accounts only for interband transitions, i.e. vertical transition in which the
|
|
electron momentum $\textbf{k}$ is conserved (optical approximation). In standard optics the intraband transitions give a
|
|
negligible contribution due to the very low momentum transferred by the incoming/outgoing photon.\\
|
|
Operating a London transformation upon $\epsilon_{2_{\alpha,\beta}}(\omega)$, it's possible to obtain the whole dielectric
|
|
tensor calculated on the imaginary frequency axis $\epsilon_{\alpha,\beta}(i\omega)$.
|
|
\begin{equation}
|
|
\epsilon_{\alpha,\beta}(i\omega)=1+\frac{2}{\pi}\int_{0}^{\infty}\frac{\omega' \epsilon_{2_{\alpha,\beta}}(\omega')}
|
|
{\omega'^{2}+\omega^{2}}d\omega'
|
|
\end{equation}
|
|
The LOSS spectrum is proportional to the imaginary of the inverse dielectric tensor, that is:
|
|
\begin{equation}
|
|
Im\Bigg\{\frac{1}{\epsilon_{\alpha,\beta}(\omega)}\Bigg\}=
|
|
\frac{\epsilon_{2_{\alpha,\beta}}(\omega)}{\epsilon_{1_{\alpha,\beta}}^{2}(\omega)+
|
|
\epsilon_{2_{\alpha,\beta}}^{2}(\omega)}
|
|
\end{equation}
|
|
this quantity provides a useful check of the dielectric tensor calculation because it reaches its maximum at the bulk plasmon
|
|
frequency $\Omega_{p}$, where the real and imaginary parts cross their paths at higher frequency. The same quantity (in eV)
|
|
is numerically evaluated using the following sum rule:
|
|
\begin{equation}
|
|
\int_{0}^{\infty}\omega\epsilon_{2_{\alpha,\beta}}(\omega)d\omega=\frac{\pi}{2}\Omega_{p}
|
|
\end{equation}
|
|
The result of this calculation is printed in the standard output file.
|
|
\end{document}
|
|
|