quantum-espresso/PP/Doc/INPUT_PROJWFC.def

300 lines
10 KiB
Modula-2

input_description -distribution {Quantum Espresso} -package PWscf -program projwfc.x {
toc {}
intro {
@b {Purpose of projwfc.x:}
projects wavefunctions onto orthogonalized atomic wavefunctions,
calculates Lowdin charges, spilling parameter, projected DOS
(separated into up and down components for lSDA)
alternatively, computes the local DOS(E), integrated in volumes
given in input
@b {Structure of the input data:}
============================
@b &PROJWFC
...
@b /
}
namelist PROJWFC {
var prefix -type CHARACTER {
info {
prefix of input file produced by @b pw.x (wavefunctions are needed)
}
default { 'pwscf' }
}
var outdir -type CHARACTER {
info {
directory containing the input data, i.e. the same as in @b pw.x
}
default {
value of the ESPRESSO_TMPDIR environment variable if set;
current directory ('./') otherwise
}
}
var ngauss -type INTEGER {
default { 0 }
info {
Type of gaussian broadening:
0 ... Simple Gaussian (default)
1 ... Methfessel-Paxton of order 1
-1 ... "cold smearing" (Marzari-Vanderbilt-DeVita-Payne)
-99 ... Fermi-Dirac function
}
}
var degauss -type REAL {
default { 0.0 }
info { gaussian broadening, Ry (not eV!) }
}
vargroup -type REAL {
var Emin
var Emax
info { min & max energy (eV) for DOS plot }
default { (band extrema) }
}
var DeltaE -type REAL {
info { energy grid step (eV) }
}
var lsym -type LOGICAL {
default { .true. }
info {
if @b .true. the projections are symmetrized,
the partial density of states are computed
if @b .false. the projections are not symmetrized, the partial
DOS can be computed only in the k-resolved case
}
}
var pawproj -type LOGICAL {
default { .false. }
info {
if @b .true. use PAW projectors and all-electron PAW basis
functions to calculate weight factors for the partial
densities of states. Following Bloechl, PRB 50, 17953 (1994),
Eq. (4 & 6), the weight factors thus approximate the real
charge within the augmentation sphere of each atom.
Only for PAW, not implemented in the noncolinear case.
}
}
var filpdos -type CHARACTER {
info { prefix for output files containing PDOS(E) }
default { (value of @ref prefix variable) }
}
var filproj -type CHARACTER {
default { (standard output) }
info {
file containing the projections
}
}
var lwrite_overlaps -type LOGICAL {
default { .false. }
info {
if @b .true., the overlap matrix of the atomic orbitals
prior to orthogonalization is written to the atomic_proj datafile.
}
}
var lbinary_data -type LOGICAL {
default { .false. }
info {
if @b .true., the atomic_proj datafile is written in binary fmt.
}
}
var kresolveddos -type LOGICAL {
default { .false. }
info {
if @b .true. the k-resolved DOS is computed: not summed over
all k-points but written as a function of the k-point index.
In this case all k-point weights are set to unity
}
}
var tdosinboxes -type LOGICAL {
default { .false. }
info {
if @b .true. compute the local DOS integrated in volumes
Volumes are defined as boxes with edges parallel to the unit cell,
containing the points of the (charge density) FFT grid included within
@ref irmin and @ref irmax, in the three dimensions:
from @ref irmin(j,n) to @ref irmax(j,n) for j=1,2,3 (n=1,@ref n_proj_boxes).
}
}
var n_proj_boxes -type INTEGER {
default { 1 }
info {
number of boxes where the local DOS is computed
}
}
var irmin(3,n_proj_boxes) -type INTEGER {
default { 1 for each box }
info {
first point of the given box
BEWARE: @ref irmin is a 2D array of the form: @ref irmin(3,@ref n_proj_boxes)
}
}
var irmax(3,n_proj_boxes) -type INTEGER {
default { 0 for each box }
info {
last point of the given box;
( 0 stands for the last point in the FFT grid )
BEWARE: @ref irmax is a 2D array of the form: @ref irmax(3,@ref n_proj_boxes)
}
}
var plotboxes -type LOGICAL {
default { .false. }
info {
if @b .true., the boxes are written in output as @b xsf files with
3D datagrids, valued 1.0 inside the box volume and 0 outside
(visualize them as isosurfaces with isovalue 0.5)
}
}
}
section -title Notes {
subsection -title {Format of output files} {
text {
Projections are written to standard output, and also to file
@ref filproj if given as input.
The total DOS and the sum of projected DOS are written to file
"filpdos".pdos_tot.
* The format for the collinear, spin-unpolarized case and the
non-collinear, spin-orbit case is:
E DOS(E) PDOS(E)
...
* The format for the collinear, spin-polarized case is:
E DOSup(E) DOSdw(E) PDOSup(E) PDOSdw(E)
...
* The format for the non-collinear, non spin-orbit case is:
E DOS(E) PDOSup(E) PDOSdw(E)
...
In the collinear case and the non-collinear, non spin-orbit case
projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l),
where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f
(one file per atomic wavefunction found in the pseudopotential file)
* The format for the collinear, spin-unpolarized case is:
E LDOS(E) PDOS_1(E) ... PDOS_2l+1(E)
...
where LDOS = \sum m=1,2l+1 PDOS_m(E)
and PDOS_m(E) = projected DOS on atomic wfc with component m
* The format for the collinear, spin-polarized case and the
non-collinear, non spin-orbit case is as above with
two components for both LDOS(E) and PDOS_m(E)
In the non-collinear, spin-orbit case (i.e. if there is at least one
fully relativistic pseudopotential) wavefunctions are projected
onto eigenstates of the total angular-momentum.
Projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l_j),
where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f
and j is the value of the total angular momentum.
In this case the format is:
E LDOS(E) PDOS_1(E) ... PDOS_2j+1(E)
...
If @ref kresolveddos=.true., the k-point index is prepended
to the formats above, e.g. (collinear, spin-unpolarized case)
ik E DOS(E) PDOS(E)
All DOS(E) are in states/eV plotted vs E in eV
}
}
subsection -title {Orbital Order} {
text {
Order of m-components for each l in the output:
1, cos(phi), sin(phi), cos(2*phi), sin(2*phi), .., cos(l*phi), sin(l*phi)
where phi is the polar angle:x=r cos(theta)cos(phi), y=r cos(theta)sin(phi)
This is determined in file Modules/ylmr2.f90 that calculates spherical harmonics.
for l=1:
1 pz (m=0)
2 px (real combination of m=+/-1 with cosine)
3 py (real combination of m=+/-1 with sine)
for l=2:
1 dz2 (m=0)
2 dzx (real combination of m=+/-1 with cosine)
3 dzy (real combination of m=+/-1 with sine)
4 dx2-y2 (real combination of m=+/-2 with cosine)
5 dxy (real combination of m=+/-2 with sine)
}
}
subsection -title {Defining boxes for the Local DOS(E)} {
text {
Boxes are specified using the variables @ref irmin and @ref irmax:
FFT grid points are included from irmin(j,n) to irmax(j,n)
for j=1,2,3 and n=1,...,@ref n_proj_boxes
@ref irmin and @ref irmax range from 1 to nr1 or nr2 or nr3
Values larger than nr1/2/3 or smaller than 1 are folded
to the unit cell.
If @ref irmax<@ref irmin FFT grid points are included from 1 to irmax
and from irmin to nr1/2/3.
}
}
subsection -title {Important notices} {
text {
The tetrahedron method is used if
- the input data file has been produced by pw.x using the option
occupations='tetrahedra', AND
- a value for degauss is not given as input to namelist &projwfc
* Gaussian broadening is used in all other cases:
- if @ref degauss is set to some value in namelist &PROJWFC, that value
(and the optional value for ngauss) is used
- if @ref degauss is NOT set to any value in namelist &PROJWFC, the
value of @ref degauss and of @ref ngauss are read from the input data
file (they will be the same used in the pw.x calculations)
- if @ref degauss is NOT set to any value in namelist &PROJWFC, AND
there is no value of @ref degauss and of @ref ngauss in the input data
file, @ref degauss=@ref DeltaE (in Ry) and @ref ngauss=0 will be used
Obsolete variables, ignored:
io_choice
smoothing
}
}
}
}