quantum-espresso/PP/Doc/INPUT_PP.def

586 lines
21 KiB
Modula-2

input_description -distribution {Quantum Espresso} -package PWscf -program pp.x {
toc {}
intro {
@b {Purpose of pp.x:} data analysis and plotting.
The code performs two steps:
(1) reads the output produced by @b pw.x, extracts and calculates
the desired quantity/quantities (rho, V, ...)
(2) writes the desired quantity to file in a suitable format for
various types of plotting and various plotting programs
The input data of this program is read from standard input
or from file and has the following format:
NAMELIST @b &INPUTPP
containing the variables for step (1), followed by
NAMELIST @b &PLOT
containing the variables for step (2)
The two steps can be performed independently. In order to perform
only step (2), leave namelist @b &INPUTPP blank. In order to perform
only step (1), do not specify namelist @b &PLOT
Intermediate results from step 1 can be saved to disk (see
variable @ref filplot in @b &INPUTPP) and later read in step 2.
Since the file with intermediate results is formatted, it
can be safely transferred to a different machine. This
also allows plotting of a linear combination (for instance,
charge differences) by saving two intermediate files and
combining them (see variables @ref weight and @ref filepp in @b &PLOT)
All output quantities are in ATOMIC (RYDBERG) UNITS unless
otherwise explicitly specified.
All charge densities integrate to the NUMBER of electrons
not to the total charge.
All potentials have the dimension of an energy (e*V, not V).
}
namelist INPUTPP {
var prefix -type CHARACTER {
info {
prefix of files saved by program pw.x
}
}
var outdir -type CHARACTER {
info {
directory containing the input data, i.e. the same as in pw.x
}
default {
value of the @tt ESPRESSO_TMPDIR environment variable if set;
current directory ('./') otherwise
}
}
var filplot -type CHARACTER {
info {
file "filplot" contains the quantity selected by plot_num
(can be saved for further processing)
}
}
var plot_num -type INTEGER {
info {
Selects what to save in filplot:
0 = electron (pseudo-)charge density
1 = total potential V_bare + V_H + V_xc
2 = local ionic potential V_bare
3 = local density of states at specific energy or grid of energies
(number of states per volume, in bohr^3, per energy unit, in Ry)
4 = local density of electronic entropy
5 = STM images
Tersoff and Hamann, PRB 31, 805 (1985)
6 = spin polarization (rho(up)-rho(down))
7 = contribution of selected wavefunction(s) to the
(pseudo-)charge density. For norm-conserving PPs,
|psi|^2 (psi=selected wavefunction). Noncollinear case:
contribution of the given state to the charge or
to the magnetization along the direction indicated
by spin_component (0 = charge, 1 = x, 2 = y, 3 = z )
8 = electron localization function (ELF)
9 = charge density minus superposition of atomic densities
10 = integrated local density of states (ILDOS)
from @ref emin to @ref emax (emin, emax in eV)
if @ref emax is not specified, @ref emax=E_fermi
11 = the V_bare + V_H potential
12 = the sawtooth electric field potential (if present)
13 = the noncollinear magnetization.
17 = all-electron valence charge density
can be performed for PAW calculations only
requires a very dense real-space grid!
18 = The exchange and correlation magnetic field in the noncollinear case
19 = Reduced density gradient
( J. Chem. Theory Comput. 7, 625 (2011), doi:10.1021/ct100641a )
Set the isosurface between 0.3 and 0.6 to plot the
non-covalent interactions (see also plot_num = 20)
20 = Product of the electron density (charge) and the second
eigenvalue of the electron-density Hessian matrix;
used to colorize the RDG plot (plot_num = 19)
21 = all-electron charge density (valence+core).
For PAW calculations only; requires a very dense real-space grid.
22 = kinetic energy density (for meta-GGA and XDM only)
}
}
choose {
when -test "plot_num=0" {
label {
Options for total charge (plot_num=0):
}
var spin_component -type INTEGER {
default 0
info {
0 = total charge (default value),
1 = spin up charge,
2 = spin down charge.
}
}
}
elsewhen -test "plot_num=1" {
label {
Options for total potential (plot_num=1):
}
var spin_component -type INTEGER {
default 0
info {
0 = spin averaged potential (default value),
1 = spin up potential,
2 = spin down potential.
}
}
}
elsewhen -test "plot_num=3" {
label {
Options for LDOS (plot_num=3):
LDOS is plotted on grid [emin, emax] with spacing delta_e.
}
var emin -type REAL {
default e_fermi
info {
lower boundary of energy grid (in eV).
Defaults to Fermi energy.
}
}
var emax -type REAL {
status OPTIONAL
info {
upper boundary of energy grid (in eV).
Defaults to Fermi energy.
}
}
var delta_e -type REAL {
default 0.1
status OPTIONAL
info {
spacing of energy grid (in eV).
}
}
var degauss_ldos -type REAL {
default {degauss (converted to eV)}
status OPTIONAL
info {
broadening of energy levels for LDOS (in eV).
Defaults to broadening degauss specified for electronic smearing
in pw.x calculation.
}
}
}
elsewhen -test "plot_num=5" {
label {
Options for STM images (plot_num=5):
}
var sample_bias -type REAL {
info {
the bias of the sample (Ry) in stm images
}
}
}
elsewhen -test "plot_num=7" {
label {
Options for |psi|^2 (plot_num=7):
}
dimension kpoint -start 1 -end 2 -type INTEGER {
info {
Unpolarized and noncollinear case:
k-point(s) to be plotted
LSDA:
k-point(s) and spin polarization to be plotted
(spin-up and spin-down correspond to different k-points!)
To plot a single kpoint ikpt, specify kpoint=ikpt or kpoint(1)=ikpt
To plot a range of kpoints [imin, imax], specify kpoint(1)=imin and kpoint(2)=imax
}
}
dimension kband -start 1 -end 2 -type INTEGER {
info {
Band(s) to be plotted.
To plot a single band ibnd, specify kband=ibnd or kband(1)=ibnd
To plot a range of bands [imin, imax], specify kband(1)=imin and kband(2)=imax
}
}
var lsign -type LOGICAL {
info {
if true and k point is Gamma, plot |psi|^2 sign(psi)
}
}
dimension spin_component -start 1 -end 2 -type INTEGER {
default 0
status OPTIONAL
info {
@b {Noncollinear case only:}
plot the contribution of the given state(s) to the charge
or to the magnetization along the direction(s) indicated
by spin_component:
0 = charge (default),
1 = x,
2 = y,
3 = z.
Ignored in unpolarized or LSDA case
To plot a single component ispin, specify spin_component=ispin or spin_component(1)=ispin
To plot a range of components [imin, imax], specify spin_component(1)=imin and spin_component(2)=imax
}
}
}
elsewhen -test "plot_num=10" {
label {
Options for ILDOS (plot_num=10):
}
var emin -type REAL {
info {
lower energy boundary (in eV)
}
}
var emax -type REAL {
info {
upper energy boundary (in eV),
i.e. compute ILDOS from @ref emin to @ref emax
}
}
var spin_component -type INTEGER {
default 0
info {
for LSDA case only: plot the contribution to ILDOS of
0 = spin-up + spin-down (default)
1 = spin-up only
2 = spin-down only
}
}
}
elsewhen -test "plot_num=13" {
label {
Options for noncollinear magnetization (plot_num=13):
}
var spin_component -type INTEGER {
default 0
info {
0 = absolute value (default value)
1 = x component of the magnetization
2 = y component of the magnetization
3 = z component of the magnetization
}
}
}
elsewhen -test "plot_num=17" {
label {
Options for reconstructed charge density (plot_num=17):
}
var spin_component -type INTEGER {
default 0
info {
0 = total charge (default value),
1 = spin up charge,
2 = spin down charge.
}
}
}
elsewhen -test "plot_num=22" {
label {
Options for kinetic energy density (plot_num=22),
LSDA case only:
}
var spin_component -type INTEGER {
default 0
info {
0 = total density (default value),
1 = spin up density,
2 = spin down density.
}
}
}
#message {
# Unfinished and untested option:
#
# plot_num = 14, 15, 16 polarisation along x, y, z respectively.
# epsilon = macroscopic dielectric constant
#}
}
}
# END of namelist &INPUTPP
# namelist PLOT
namelist PLOT {
var nfile -type INTEGER {
default 1
status OPTIONAL
info {
the number of data files to read
}
}
group {
dimension filepp -start 1 -end nfile -type CHARACTER {
default { filepp(1)=filplot }
info {
nfile = 1 : file containing the quantity to be plotted
nfile > 1 : see @ref weight
}
}
dimension weight -start 1 -end nfile -type REAL {
default { weight(1)=1.0 }
info {
weighing factors: assuming that rho(i) is the quantity
read from filepp(i), the quantity that will be plotted is:
weight(1)*rho(1) + weight(2)*rho(2) + weight(3)*rho(3) + ...
}
}
message {
@b BEWARE: atomic coordinates are read from the first file;
if their number is different for different files,
the first file must have the largest number of atoms
}
}
var iflag -type INTEGER {
info {
0 = 1D plot of the spherical average
1 = 1D plot
2 = 2D plot
3 = 3D plot
4 = 2D polar plot on a sphere
}
}
var output_format -type INTEGER {
info {
(ignored on 1D plot)
0 = format suitable for gnuplot (1D)
1 = obsolete format no longer supported
2 = format suitable for plotrho (2D)
3 = format suitable for XCRYSDEN (2D or user-supplied 3D region)
4 = obsolete format no longer supported
5 = format suitable for XCRYSDEN (3D, using entire FFT grid)
6 = format as gaussian cube file (3D)
(can be read by many programs)
7 = format suitable for gnuplot (2D) x, y, f(x,y)
}
}
var fileout -type CHARACTER {
default { standard output }
info {
name of the file to which the plot is written
}
}
var interpolation -type CHARACTER {
default { 'fourier' }
options {
info {
Type of interpolation:
}
opt -val 'fourier' {}
opt -val 'bspline' { (EXPERIMENTAL) }
}
}
choose {
when -test "iflag = 0 or 1" {
label { the following variables are REQUIRED: }
dimension e1 -start 1 -end 3 -type REAL {
info {
3D vector which determines the plotting line (in alat units)
}
}
dimension x0 -start 1 -end 3 -type REAL {
info {
3D vector, origin of the line (in alat units)
}
}
var nx -type INTEGER {
info {
number of points in the line:
rho(i) = rho( x0 + e1 * (i-1)/(nx-1) ), i=1, nx
}
}
}
elsewhen -test "iflag = 2" {
label { the following variables are REQUIRED: }
dimensiongroup -start 1 -end 3 -type REAL {
dimension e1
dimension e2
info {
3D vectors which determine the plotting plane (in alat units)
BEWARE: @b e1 and @b e2 must be orthogonal
}
}
dimension x0 -start 1 -end 3 -type REAL {
info {
3D vector, origin of the plane (in alat units)
}
}
vargroup -type INTEGER {
var nx
var ny
info {
Number of points in the plane:
rho(i,j) = rho( x0 + e1 * (i-1)/(nx-1)
+ e2 * (j-1)/(ny-1) ), i=1,nx ; j=1,ny
}
}
}
elsewhen -test "iflag = 3" {
label { the following variables are OPTIONAL: }
dimensiongroup -start 1 -end 3 -type REAL {
dimension e1
dimension e2
dimension e3
info {
3D vectors which determine the plotting parallelepiped
(if present, must be orthogonal)
@ref e1, @ref e2, and @ref e3 are in alat units !
}
}
dimension x0 -start 1 -end 3 -type REAL {
info {
3D vector, origin of the parallelepiped
@ref x0 is in alat units !
}
}
vargroup -type INTEGER {
var nx
var ny
var nz
info {
Number of points in the parallelepiped:
rho(i,j,k) = rho( x0 + e1 * (i-1)/nx
+ e2 * (j-1)/ny
+ e3 * (k-1)/nz ),
i = 1, nx ; j = 1, ny ; k = 1, nz
- If @ref output_format = 3 (XCRYSDEN), the above variables
are used to determine the grid to plot.
- If @ref output_format = 5 (XCRYSDEN), the above variables
are ignored, the entire FFT grid is written in the
XCRYSDEN format - works for any crystal axis (VERY FAST)
- If @ref e1, @ref e2, @ref e3, @ref x0 are present,
and @ref e1, @ref e2, @ref e3 are parallel to xyz
and parallel to crystal axis, a subset of the FFT
grid that approximately covers the parallelepiped
defined by @ref e1, @ref e2, @ref e3, @ref x0, is
written - untested, might be obsolete
- Otherwise, the required 3D grid is generated from the
Fourier components (may be VERY slow)
}
}
}
elsewhen -test "iflag = 4" {
label { the following variables are REQUIRED: }
var radius -type REAL {
info {
Radius of the sphere (alat units), centered at (0,0,0)
}
}
vargroup -type INTEGER {
var nx
var ny
info {
Number of points in the polar plane:
phi(i) = 2 pi * (i - 1)/(nx-1), i=1, nx
theta(j) = pi * (j - 1)/(ny-1), j=1, ny
}
}
}
}
}
# END of namelist PLOT
}