mirror of https://gitlab.com/QEF/q-e.git
115 lines
3.2 KiB
Fortran
115 lines
3.2 KiB
Fortran
!
|
|
! Copyright (C) 2001 PWSCF group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine symm(phi, u, xq, s, isym, rtau, irt, at, bg, nat)
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! This routine symmetrizes the matrix of electron-phonon coefficients
|
|
! written in the basis of the modes
|
|
!
|
|
USE kinds, ONLY: DP
|
|
USE constants, ONLY: tpi
|
|
!
|
|
implicit none
|
|
integer, intent (in) :: nat, s (3,3,48), irt (48, nat), isym
|
|
! input: the number of atoms
|
|
! input: the symmetry matrices
|
|
! input: the rotated of each atom
|
|
! input: the small group of q
|
|
|
|
real(DP), intent (in) :: xq (3), rtau (3, 48, nat), at (3, 3), bg (3, 3)
|
|
! input: the coordinates of q
|
|
! input: the R associated at each r
|
|
! input: direct lattice vectors
|
|
! input: reciprocal lattice vectors
|
|
|
|
complex(DP), intent(in) :: u(3*nat,3*nat)
|
|
! input: patterns
|
|
complex(DP), intent(inout) :: phi(3*nat,3*nat)
|
|
! input: matrix to be symmetrized , output: symmetrized matrix
|
|
|
|
integer :: i, j, icart, jcart, na, nb, mu, nu, sna, snb, &
|
|
ipol, jpol, lpol, kpol
|
|
! counters
|
|
real(DP) :: arg
|
|
!
|
|
complex(DP) :: fase, work, phi0(3*nat,3*nat), phi1(3,3,nat,nat), phi2(3,3,nat,nat)
|
|
! workspace
|
|
!
|
|
! First we transform to cartesian coordinates
|
|
!
|
|
phi0 = matmul(u, matmul(phi, conjg(transpose(u))))
|
|
do i = 1, 3 * nat
|
|
na = (i - 1) / 3 + 1
|
|
icart = i - 3 * (na - 1)
|
|
do j = 1, 3 * nat
|
|
nb = (j - 1) / 3 + 1
|
|
jcart = j - 3 * (nb - 1)
|
|
phi1(icart,jcart,na,nb) = phi0(i,j)
|
|
enddo
|
|
enddo
|
|
!
|
|
! Then we transform to crystal axis
|
|
!
|
|
do na = 1, nat
|
|
do nb = 1, nat
|
|
call trntnsc (phi1(1,1,na,nb), at, bg, - 1)
|
|
enddo
|
|
enddo
|
|
!
|
|
! And we symmetrize in this basis
|
|
!
|
|
do na = 1, nat
|
|
do nb = 1, nat
|
|
sna = irt (isym, na)
|
|
snb = irt (isym, nb)
|
|
arg = 0.d0
|
|
do ipol = 1, 3
|
|
arg = arg + (xq(ipol)*(rtau(ipol,isym,na) - rtau(ipol,isym,nb)))
|
|
enddo
|
|
arg = arg * tpi
|
|
fase = CMPLX(DCOS (arg), DSIN (arg) ,kind=DP)
|
|
do ipol = 1, 3
|
|
do jpol = 1, 3
|
|
phi2(ipol,jpol,na,nb) = (0.0d0,0.0d0)
|
|
do kpol = 1, 3
|
|
do lpol = 1, 3
|
|
phi2(ipol,jpol,na,nb) = phi2(ipol,jpol,na,nb) + &
|
|
s(ipol,kpol,isym) * s(jpol,lpol,isym) * &
|
|
phi1(kpol,lpol,sna,snb) * fase
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!
|
|
! Back to cartesian coordinates
|
|
!
|
|
do na = 1, nat
|
|
do nb = 1, nat
|
|
call trntnsc (phi2 (1, 1, na, nb), at, bg, + 1)
|
|
enddo
|
|
enddo
|
|
!
|
|
! rewrite as an array with dimensions 3nat x 3nat
|
|
!
|
|
do i = 1, 3 * nat
|
|
na = (i - 1) / 3 + 1
|
|
icart = i - 3 * (na - 1)
|
|
do j = 1, 3 * nat
|
|
nb = (j - 1) / 3 + 1
|
|
jcart = j - 3 * (nb - 1)
|
|
phi (i, j) = phi2 (icart, jcart, na, nb)
|
|
enddo
|
|
enddo
|
|
!
|
|
return
|
|
end subroutine symm
|
|
|