mirror of https://gitlab.com/QEF/q-e.git
454 lines
16 KiB
Fortran
454 lines
16 KiB
Fortran
!
|
|
! Copyright (C) 2001-2018 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine solve_e
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! This routine is a driver for the solution of the linear system which
|
|
! defines the change of the wavefunction due to an electric field.
|
|
! It performs the following tasks:
|
|
! a) computes the bare potential term x | psi >
|
|
! b) adds to it the screening term Delta V_{SCF} | psi >
|
|
! If lda_plus_u=.true. compute also the SCF part
|
|
! of the response Hubbard potential.
|
|
! c) applies P_c^+ (orthogonalization to valence states)
|
|
! d) calls cgsolve_all to solve the linear system
|
|
! e) computes Delta rho, Delta V_{SCF} and symmetrizes them
|
|
! f) If lda_plus_u=.true. compute also the response occupation
|
|
! matrices dnsscf
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE ions_base, ONLY : nat
|
|
USE io_global, ONLY : stdout, ionode
|
|
USE io_files, ONLY : prefix, diropn
|
|
USE cell_base, ONLY : tpiba2
|
|
USE klist, ONLY : ltetra, lgauss, xk, wk, ngk, igk_k
|
|
USE gvect, ONLY : g
|
|
USE gvecs, ONLY : doublegrid
|
|
USE fft_base, ONLY : dfftp, dffts
|
|
USE lsda_mod, ONLY : lsda, nspin, current_spin, isk
|
|
USE spin_orb, ONLY : domag
|
|
USE wvfct, ONLY : nbnd, npwx, g2kin, et
|
|
USE check_stop, ONLY : check_stop_now
|
|
USE buffers, ONLY : get_buffer, save_buffer
|
|
USE wavefunctions, ONLY : evc
|
|
USE uspp, ONLY : okvan, vkb
|
|
USE uspp_param, ONLY : upf, nhm
|
|
USE noncollin_module, ONLY : noncolin, npol, nspin_mag
|
|
USE scf, ONLY : rho
|
|
USE paw_variables, ONLY : okpaw
|
|
USE paw_onecenter, ONLY : paw_dpotential
|
|
USE paw_symmetry, ONLY : paw_desymmetrize
|
|
|
|
USE units_ph, ONLY : lrdwf, iudwf, lrdrho, iudrho
|
|
USE units_lr, ONLY : iuwfc, lrwfc
|
|
USE output, ONLY : fildrho
|
|
USE control_ph, ONLY : ext_recover, rec_code, &
|
|
lnoloc, convt, tr2_ph, nmix_ph, &
|
|
alpha_mix, lgamma_gamma, niter_ph, &
|
|
flmixdpot, rec_code_read
|
|
USE recover_mod, ONLY : read_rec, write_rec
|
|
USE mp_pools, ONLY : inter_pool_comm
|
|
USE mp_bands, ONLY : intra_bgrp_comm, ntask_groups
|
|
USE mp, ONLY : mp_sum
|
|
USE lrus, ONLY : int3_paw
|
|
USE qpoint, ONLY : nksq
|
|
USE eqv, ONLY : dpsi, dvpsi
|
|
USE control_lr, ONLY : nbnd_occ, lgamma
|
|
USE dv_of_drho_lr
|
|
USE fft_helper_subroutines
|
|
USE fft_interfaces, ONLY : fft_interpolate
|
|
USE ldaU, ONLY : lda_plus_u
|
|
|
|
implicit none
|
|
|
|
real(DP) :: thresh, anorm, averlt, dr2
|
|
! thresh: convergence threshold
|
|
! anorm : the norm of the error
|
|
! averlt: average number of iterations
|
|
! dr2 : self-consistency error
|
|
real(DP), allocatable :: h_diag (:,:)
|
|
! h_diag: diagonal part of the Hamiltonian
|
|
|
|
complex(DP) , allocatable, target :: &
|
|
dvscfin (:,:,:) ! change of the scf potential (input)
|
|
complex(DP) , pointer :: &
|
|
dvscfins (:,:,:) ! change of the scf potential (smooth)
|
|
complex(DP) , allocatable :: &
|
|
dvscfout (:,:,:), & ! change of the scf potential (output)
|
|
dbecsum(:,:,:,:), & ! the becsum with dpsi
|
|
dbecsum_nc(:,:,:,:,:), & ! the becsum with dpsi
|
|
mixin(:), mixout(:), & ! auxiliary for paw mixing
|
|
aux1 (:,:), ps (:,:), &
|
|
tg_dv(:,:), &
|
|
tg_psic(:,:), aux2(:,:)
|
|
|
|
complex(DP), EXTERNAL :: zdotc ! the scalar product function
|
|
|
|
logical :: conv_root, exst
|
|
! conv_root: true if linear system is converged
|
|
|
|
integer :: npw, npwq
|
|
integer :: kter, iter0, ipol, ibnd, iter, lter, ik, ig, is, nrec, ndim, ios
|
|
! counters
|
|
integer :: ltaver, lintercall, incr, jpol, v_siz
|
|
|
|
real(DP) :: tcpu, get_clock
|
|
! timing variables
|
|
|
|
external ch_psi_all, cg_psi
|
|
|
|
call start_clock ('solve_e')
|
|
!
|
|
! This routine is task group aware
|
|
!
|
|
allocate (dvscfin( dfftp%nnr, nspin_mag, 3))
|
|
if (doublegrid) then
|
|
allocate (dvscfins(dffts%nnr, nspin_mag, 3))
|
|
else
|
|
dvscfins => dvscfin
|
|
endif
|
|
allocate (dvscfout(dfftp%nnr, nspin_mag, 3))
|
|
IF (okpaw) THEN
|
|
ALLOCATE (mixin(dfftp%nnr*nspin_mag*3+(nhm*(nhm+1)*nat*nspin_mag*3)/2) )
|
|
ALLOCATE (mixout(dfftp%nnr*nspin_mag*3+(nhm*(nhm+1)*nat*nspin_mag*3)/2) )
|
|
ENDIF
|
|
allocate (dbecsum( nhm*(nhm+1)/2, nat, nspin_mag, 3))
|
|
IF (noncolin) allocate (dbecsum_nc (nhm, nhm, nat, nspin, 3))
|
|
allocate (aux1(dffts%nnr,npol))
|
|
allocate (h_diag(npwx*npol, nbnd))
|
|
allocate (aux2(npwx*npol, nbnd))
|
|
IF (okpaw) mixin=(0.0_DP,0.0_DP)
|
|
|
|
if (rec_code_read == -20.AND.ext_recover) then
|
|
! restarting in Electric field calculation
|
|
IF (okpaw) THEN
|
|
CALL read_rec(dr2, iter0, 3, dvscfin, dvscfins, dvscfout, dbecsum)
|
|
CALL setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
|
|
mixin, dvscfin, dbecsum, ndim, -1 )
|
|
ELSE
|
|
CALL read_rec(dr2, iter0, 3, dvscfin, dvscfins)
|
|
ENDIF
|
|
else if (rec_code_read > -20 .AND. rec_code_read <= -10) then
|
|
! restarting in Raman: proceed
|
|
convt = .true.
|
|
else
|
|
convt = .false.
|
|
iter0 = 0
|
|
endif
|
|
incr=1
|
|
IF ( dffts%has_task_groups ) THEN
|
|
!
|
|
v_siz = dffts%nnr_tg
|
|
ALLOCATE( tg_dv ( v_siz, nspin_mag ) )
|
|
ALLOCATE( tg_psic( v_siz, npol ) )
|
|
incr = fftx_ntgrp(dffts)
|
|
!
|
|
ENDIF
|
|
!
|
|
IF ( ionode .AND. fildrho /= ' ') THEN
|
|
INQUIRE (UNIT = iudrho, OPENED = exst)
|
|
IF (exst) CLOSE (UNIT = iudrho, STATUS='keep')
|
|
CALL diropn (iudrho, TRIM(fildrho)//'.E', lrdrho, exst)
|
|
end if
|
|
IF (rec_code_read > -20) convt=.TRUE.
|
|
!
|
|
if (convt) go to 155
|
|
!
|
|
! if q=0 for a metal: allocate and compute local DOS at Ef
|
|
!
|
|
if ( (lgauss .or. ltetra) .or..not.lgamma) call errore ('solve_e', &
|
|
'called in the wrong case', 1)
|
|
!
|
|
! The outside loop is over the iterations
|
|
!
|
|
do kter = 1, niter_ph
|
|
!
|
|
FLUSH( stdout )
|
|
iter = kter + iter0
|
|
ltaver = 0
|
|
lintercall = 0
|
|
!
|
|
dvscfout(:,:,:)=(0.d0,0.d0)
|
|
dbecsum(:,:,:,:)=(0.d0,0.d0)
|
|
IF (noncolin) dbecsum_nc=(0.d0,0.d0)
|
|
!
|
|
! DFPT+U: at each iteration calculate dnsscf,
|
|
! i.e. the scf variation of the occupation matrix ns.
|
|
!
|
|
IF (lda_plus_u .AND. (iter.NE.1)) &
|
|
CALL dnsq_scf (3, .false., 0, 1, .false.)
|
|
!
|
|
do ik = 1, nksq
|
|
!
|
|
npw = ngk(ik)
|
|
npwq= npw ! q=0 always in this routine
|
|
!
|
|
if (lsda) current_spin = isk (ik)
|
|
!
|
|
! reads unperturbed wavefunctions psi_k in G_space, for all bands
|
|
!
|
|
if (nksq.gt.1) call get_buffer (evc, lrwfc, iuwfc, ik)
|
|
!
|
|
! compute beta functions and kinetic energy for k-point ik
|
|
! needed by h_psi, called by ch_psi_all, called by cgsolve_all
|
|
!
|
|
CALL init_us_2 (npw, igk_k(1,ik), xk (1, ik), vkb)
|
|
CALL g2_kin(ik)
|
|
!
|
|
! compute preconditioning matrix h_diag used by cgsolve_all
|
|
!
|
|
CALL h_prec (ik, evc, h_diag)
|
|
!
|
|
do ipol = 1, 3
|
|
!
|
|
! computes/reads P_c^+ x psi_kpoint into dvpsi array
|
|
!
|
|
call dvpsi_e (ik, ipol)
|
|
!
|
|
if (iter > 1) then
|
|
!
|
|
! calculates dvscf_q*psi_k in G_space, for all bands, k=kpoint
|
|
! dvscf_q from previous iteration (mix_potential)
|
|
!
|
|
IF( dffts%has_task_groups ) THEN
|
|
IF (noncolin) THEN
|
|
CALL tg_cgather( dffts, dvscfins(:,1,ipol), tg_dv(:,1))
|
|
IF (domag) THEN
|
|
DO jpol=2,4
|
|
CALL tg_cgather( dffts, dvscfins(:,jpol,ipol), tg_dv(:,jpol))
|
|
ENDDO
|
|
ENDIF
|
|
ELSE
|
|
CALL tg_cgather( dffts, dvscfins(:,current_spin,ipol), tg_dv(:,1))
|
|
ENDIF
|
|
ENDIF
|
|
aux2=(0.0_DP,0.0_DP)
|
|
do ibnd = 1, nbnd_occ (ik), incr
|
|
IF ( dffts%has_task_groups ) THEN
|
|
call cft_wave_tg (ik, evc, tg_psic, 1, v_siz, ibnd, nbnd_occ (ik) )
|
|
call apply_dpot(v_siz, tg_psic, tg_dv, 1)
|
|
call cft_wave_tg (ik, aux2, tg_psic, -1, v_siz, ibnd, nbnd_occ (ik))
|
|
ELSE
|
|
call cft_wave (ik, evc (1, ibnd), aux1, +1)
|
|
call apply_dpot(dffts%nnr, aux1, dvscfins(1,1,ipol), current_spin)
|
|
call cft_wave (ik, aux2 (1, ibnd), aux1, -1)
|
|
ENDIF
|
|
enddo
|
|
dvpsi=dvpsi+aux2
|
|
!
|
|
! In the case of US pseudopotentials there is an additional
|
|
! selfconsist term which comes from the dependence of D on
|
|
! V_{eff} on the bare change of the potential
|
|
!
|
|
call adddvscf(ipol,ik)
|
|
!
|
|
! DFPT+U: add to dvpsi the scf part of the response
|
|
! Hubbard potential dV_hub
|
|
!
|
|
if (lda_plus_u) call adddvhubscf (ipol, ik)
|
|
!
|
|
endif
|
|
!
|
|
! Orthogonalize dvpsi to valence states: ps = <evc|dvpsi>
|
|
!
|
|
CALL orthogonalize(dvpsi, evc, ik, ik, dpsi, npwq, .false.)
|
|
!
|
|
if (iter == 1) then
|
|
!
|
|
! At the first iteration dpsi and dvscfin are set to zero,
|
|
!
|
|
dpsi(:,:)=(0.d0,0.d0)
|
|
dvscfin(:,:,:)=(0.d0,0.d0)
|
|
!
|
|
! starting threshold for the iterative solution of the linear
|
|
! system
|
|
!
|
|
thresh = 1.d-2
|
|
if (lnoloc) thresh = 1.d-5
|
|
else
|
|
! starting value for delta_psi is read from iudwf
|
|
!
|
|
nrec = (ipol - 1) * nksq + ik
|
|
call get_buffer (dpsi, lrdwf, iudwf, nrec)
|
|
!
|
|
! threshold for iterative solution of the linear system
|
|
!
|
|
thresh = min (0.1d0 * sqrt (dr2), 1.0d-2)
|
|
endif
|
|
!
|
|
! iterative solution of the linear system (H-e)*dpsi=dvpsi
|
|
! dvpsi=-P_c+ (dvbare+dvscf)*psi , dvscf fixed.
|
|
!
|
|
|
|
conv_root = .true.
|
|
|
|
call cgsolve_all (ch_psi_all,cg_psi,et(1,ik),dvpsi,dpsi, &
|
|
h_diag,npwx,npw,thresh,ik,lter,conv_root,anorm,nbnd_occ(ik),npol)
|
|
|
|
ltaver = ltaver + lter
|
|
lintercall = lintercall + 1
|
|
if (.not.conv_root) WRITE( stdout, "(5x,'kpoint',i4,' ibnd',i4, &
|
|
& ' solve_e: root not converged ',es10.3)") ik &
|
|
&, ibnd, anorm
|
|
!
|
|
! writes delta_psi on iunit iudwf, k=kpoint,
|
|
!
|
|
nrec = (ipol - 1) * nksq + ik
|
|
call save_buffer(dpsi, lrdwf, iudwf, nrec)
|
|
!
|
|
! calculates dvscf, sum over k => dvscf_q_ipert
|
|
!
|
|
IF (noncolin) THEN
|
|
call incdrhoscf_nc(dvscfout(1,1,ipol),wk(ik),ik, &
|
|
dbecsum_nc(1,1,1,1,ipol), dpsi, 1)
|
|
ELSE
|
|
call incdrhoscf (dvscfout(1,current_spin,ipol), wk(ik), &
|
|
ik, dbecsum(1,1,current_spin,ipol), dpsi)
|
|
ENDIF
|
|
enddo ! on polarizations
|
|
enddo ! on k points
|
|
!
|
|
! The calculation of dbecsum is distributed across processors
|
|
! (see addusdbec) - we sum over processors the contributions
|
|
! coming from each slice of bands
|
|
!
|
|
IF (noncolin) THEN
|
|
call mp_sum ( dbecsum_nc, intra_bgrp_comm )
|
|
ELSE
|
|
call mp_sum ( dbecsum, intra_bgrp_comm )
|
|
END IF
|
|
|
|
if (doublegrid) then
|
|
do is=1,nspin_mag
|
|
do ipol=1,3
|
|
call fft_interpolate (dffts, dvscfout(:,is,ipol), dfftp, dvscfout(:,is,ipol))
|
|
enddo
|
|
enddo
|
|
endif
|
|
!
|
|
IF (noncolin.and.okvan) CALL set_dbecsum_nc(dbecsum_nc, dbecsum, 3)
|
|
!
|
|
call addusddense (dvscfout, dbecsum)
|
|
!
|
|
! dvscfout contains the (unsymmetrized) linear charge response
|
|
! for the three polarizations - symmetrize it
|
|
!
|
|
call mp_sum ( dvscfout, inter_pool_comm )
|
|
IF (okpaw) call mp_sum ( dbecsum, inter_pool_comm )
|
|
if (.not.lgamma_gamma) then
|
|
call psyme (dvscfout)
|
|
IF ( noncolin.and.domag ) CALL psym_dmage(dvscfout)
|
|
endif
|
|
!
|
|
! save the symmetrized linear charge response to file
|
|
! calculate the corresponding linear potential response
|
|
!
|
|
do ipol=1,3
|
|
if (fildrho.ne.' ') call davcio_drho(dvscfout(1,1,ipol),lrdrho, &
|
|
iudrho,ipol,+1)
|
|
IF (lnoloc) then
|
|
dvscfout(:,:,ipol)=(0.d0,0.d0)
|
|
ELSE
|
|
call dv_of_drho (dvscfout (1, 1, ipol), .false.)
|
|
ENDIF
|
|
enddo
|
|
!
|
|
! mix the new potential with the old
|
|
!
|
|
IF (okpaw) THEN
|
|
!
|
|
! In this case we mix also dbecsum
|
|
!
|
|
call setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
|
|
mixout, dvscfout, dbecsum, ndim, -1 )
|
|
call mix_potential (2*3*dfftp%nnr*nspin_mag+2*ndim, mixout, mixin, &
|
|
alpha_mix(kter), dr2, 3*tr2_ph/npol, iter, &
|
|
nmix_ph, flmixdpot, convt)
|
|
call setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
|
|
mixin, dvscfin, dbecsum, ndim, 1 )
|
|
ELSE
|
|
call mix_potential (2*3*dfftp%nnr*nspin_mag, dvscfout, dvscfin, alpha_mix ( &
|
|
kter), dr2, 3 * tr2_ph / npol, iter, nmix_ph, flmixdpot, convt)
|
|
ENDIF
|
|
if (doublegrid) then
|
|
do is=1,nspin_mag
|
|
do ipol = 1, 3
|
|
call fft_interpolate (dfftp, dvscfin(:,is,ipol), dffts, dvscfins(:,is,ipol))
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
IF (okpaw) THEN
|
|
IF (noncolin) THEN
|
|
! call PAW_dpotential(dbecsum_nc,becsum_nc,int3_paw,3)
|
|
ELSE
|
|
!
|
|
! The presence of c.c. in the formula gives a factor 2.0
|
|
!
|
|
dbecsum=2.0_DP * dbecsum
|
|
IF (.NOT. lgamma_gamma) CALL PAW_desymmetrize(dbecsum)
|
|
call PAW_dpotential(dbecsum,rho%bec,int3_paw,3)
|
|
ENDIF
|
|
ENDIF
|
|
|
|
call newdq(dvscfin,3)
|
|
|
|
averlt = DBLE (ltaver) / DBLE (lintercall)
|
|
|
|
tcpu = get_clock ('PHONON')
|
|
WRITE( stdout, '(/,5x," iter # ",i3," total cpu time :",f8.1, &
|
|
& " secs av.it.: ",f5.1)') iter, tcpu, averlt
|
|
dr2 = dr2 / 3
|
|
WRITE( stdout, "(5x,' thresh=',es10.3, ' alpha_mix = ',f6.3, &
|
|
& ' |ddv_scf|^2 = ',es10.3 )") thresh, alpha_mix (kter), dr2
|
|
!
|
|
FLUSH( stdout )
|
|
!
|
|
! rec_code: state of the calculation
|
|
! rec_code=-20 Electric Field
|
|
!
|
|
rec_code=-20
|
|
IF (okpaw) THEN
|
|
CALL write_rec('solve_e...', 0, dr2, iter, convt, 3, dvscfin, &
|
|
dvscfout, dbecsum)
|
|
ELSE
|
|
CALL write_rec('solve_e...', 0, dr2, iter, convt, 3, dvscfin)
|
|
ENDIF
|
|
|
|
if (check_stop_now()) call stop_smoothly_ph (.false.)
|
|
|
|
if (convt) goto 155
|
|
|
|
enddo
|
|
155 continue
|
|
!
|
|
deallocate (h_diag)
|
|
deallocate (aux1)
|
|
deallocate (dbecsum)
|
|
deallocate (dvscfout)
|
|
IF (okpaw) THEN
|
|
DEALLOCATE(mixin)
|
|
DEALLOCATE(mixout)
|
|
ENDIF
|
|
if (doublegrid) deallocate (dvscfins)
|
|
deallocate (dvscfin)
|
|
if (noncolin) deallocate(dbecsum_nc)
|
|
deallocate(aux2)
|
|
IF ( dffts%has_task_groups ) THEN
|
|
!
|
|
DEALLOCATE( tg_dv )
|
|
DEALLOCATE( tg_psic)
|
|
!
|
|
ENDIF
|
|
|
|
call stop_clock ('solve_e')
|
|
return
|
|
end subroutine solve_e
|