mirror of https://gitlab.com/QEF/q-e.git
292 lines
9.0 KiB
Fortran
292 lines
9.0 KiB
Fortran
!
|
|
! Copyright (C) 2001-2003 PWSCF group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!---------------------------------------------------------------------
|
|
subroutine set_irr_new (xq, u, npert, nirr, eigen)
|
|
!---------------------------------------------------------------------
|
|
!
|
|
! This subroutine computes a basis for all the irreducible
|
|
! representations of the small group of q, which are contained
|
|
! in the representation which has as basis the displacement vectors.
|
|
! This is achieved by building a random hermitean matrix,
|
|
! symmetrizing it and diagonalizing the result. The eigenvectors
|
|
! give a basis for the irreducible representations of the
|
|
! small group of q.
|
|
!
|
|
! Original routine was from C. Bungaro.
|
|
! Revised Oct. 1995 by Andrea Dal Corso.
|
|
! April 1997: parallel stuff added (SdG)
|
|
!
|
|
USE io_global, ONLY : stdout
|
|
USE kinds, only : DP
|
|
USE ions_base, ONLY : nat, tau, ntyp => nsp, ityp, amass
|
|
USE cell_base, ONLY : at, bg
|
|
USE symm_base, ONLY : s, sr, invs, nsym, irt, t_rev
|
|
USE modes, ONLY : num_rap_mode, name_rap_mode
|
|
USE noncollin_module, ONLY : noncolin, nspin_mag
|
|
USE spin_orb, ONLY : domag
|
|
USE constants, ONLY: tpi
|
|
USE control_ph, ONLY : search_sym
|
|
USE control_flags, ONLY : iverbosity
|
|
USE random_numbers, ONLY : randy
|
|
USE rap_point_group, ONLY : name_rap
|
|
|
|
use mp, only: mp_bcast
|
|
use io_global, only : ionode_id
|
|
use mp_images, only : intra_image_comm
|
|
|
|
USE lr_symm_base, ONLY : nsymq, minus_q, irotmq, gi, gimq, rtau
|
|
USE control_lr, ONLY : lgamma
|
|
|
|
implicit none
|
|
!
|
|
! first the dummy variables
|
|
!
|
|
real(DP), INTENT(IN) :: xq (3)
|
|
! input: the q point
|
|
|
|
complex(DP), INTENT(OUT) :: u(3*nat, 3*nat)
|
|
|
|
INTEGER, INTENT(OUT) :: npert(3*nat), nirr
|
|
|
|
REAL(DP), INTENT(OUT) :: eigen(3*nat)
|
|
|
|
!
|
|
! here the local variables
|
|
!
|
|
integer :: na, nb, imode, jmode, ipert, jpert, nsymtot, imode0, &
|
|
irr, ipol, jpol, isymq, irot, sna, isym
|
|
! counters and auxiliary variables
|
|
|
|
integer :: info, mode_per_rap(0:12), count_rap(0:12), rap, init, pos, irap, &
|
|
num_rap_aux( 3 * nat ), ierr
|
|
|
|
real(DP) :: modul, arg, eig(3*nat)
|
|
! the eigenvalues of dynamical matrix
|
|
! the modulus of the mode
|
|
! the argument of the phase
|
|
|
|
complex(DP) :: wdyn (3, 3, nat, nat), phi (3 * nat, 3 * nat), &
|
|
wrk_u (3, nat), wrk_ru (3, nat), fase
|
|
! the dynamical matrix
|
|
! the dynamical matrix with two indices
|
|
! pattern
|
|
! rotated pattern
|
|
! the phase factor
|
|
|
|
logical :: magnetic_sym
|
|
|
|
magnetic_sym=noncolin.AND.domag
|
|
!
|
|
! then we generate a random hermitean matrix
|
|
!
|
|
arg = randy(0)
|
|
call random_matrix_new (irt,nsymq,minus_q,irotmq,nat,wdyn,lgamma)
|
|
!call write_matrix('random matrix',wdyn,nat)
|
|
!
|
|
! symmetrize the random matrix with the little group of q
|
|
!
|
|
call symdynph_gq_new (xq,wdyn,s,invs,rtau,irt,nsymq,nat,irotmq,minus_q)
|
|
!call write_matrix('symmetrized matrix',wdyn,nat)
|
|
!
|
|
! Diagonalize the symmetrized random matrix.
|
|
! Transform the symmetrized matrix, currently in crystal coordinates,
|
|
! in cartesian coordinates.
|
|
!
|
|
do na = 1, nat
|
|
do nb = 1, nat
|
|
call trntnsc( wdyn(1,1,na,nb), at, bg, 1 )
|
|
enddo
|
|
enddo
|
|
!
|
|
! We copy the dynamical matrix in a bidimensional array
|
|
!
|
|
CALL compact_dyn(nat, phi, wdyn)
|
|
!
|
|
! Diagonalize
|
|
!
|
|
call cdiagh (3 * nat, phi, 3 * nat, eigen, u)
|
|
|
|
!
|
|
! We adjust the phase of each mode in such a way that the first
|
|
! non zero element is real
|
|
!
|
|
do imode = 1, 3 * nat
|
|
do na = 1, 3 * nat
|
|
modul = abs (u(na, imode) )
|
|
if (modul.gt.1d-9) then
|
|
fase = u (na, imode) / modul
|
|
goto 110
|
|
endif
|
|
enddo
|
|
call errore ('set_irr', 'one mode is zero', imode)
|
|
110 do na = 1, 3 * nat
|
|
u (na, imode) = - u (na, imode) * CONJG(fase)
|
|
enddo
|
|
enddo
|
|
!
|
|
! We have here a test which writes eigenvectors and eigenvalues
|
|
!
|
|
if (iverbosity.eq.1) then
|
|
npert=1
|
|
do imode=1,3*nat
|
|
WRITE( stdout, '(2x,"autoval = ", e10.4)') eigen(imode)
|
|
CALL write_modes_out(imode,imode-1)
|
|
end do
|
|
end if
|
|
|
|
IF (search_sym.AND.nspin_mag/=4) THEN
|
|
CALL find_mode_sym_new (u, eigen, tau, nat, nsymq, s, sr, irt, xq, &
|
|
rtau, amass, ntyp, ityp, 0, .FALSE., .TRUE., num_rap_mode, ierr)
|
|
|
|
!
|
|
! Order the modes so that we first make all those that belong to the first
|
|
! representation, then the second ect.
|
|
!
|
|
!
|
|
! First count, for each irreducible representation, how many modes
|
|
! belong to that representation. Modes that could not be classified
|
|
! have num_rap_mode 0.
|
|
!
|
|
mode_per_rap=0
|
|
DO imode=1,3*nat
|
|
mode_per_rap(num_rap_mode(imode))= &
|
|
mode_per_rap(num_rap_mode(imode))+1
|
|
ENDDO
|
|
!
|
|
! The position of each mode on the list is the following:
|
|
! The positions from 1 to mode_per_rap(0) contain the modes that transform
|
|
! according to the first representation. From mode_per_rap(1)+1 to
|
|
! mode_per_rap(1) + mode_per_rap(2) the mode that transform according
|
|
! to the second ecc.
|
|
!
|
|
count_rap=1
|
|
DO imode=1,3*nat
|
|
rap=num_rap_mode(imode)
|
|
IF (rap>12) call errore('set_irr',&
|
|
'problem with the representation',1)
|
|
!
|
|
! Determine the first position for the representation rap
|
|
!
|
|
init=0
|
|
DO irap=0,rap-1
|
|
init=init+mode_per_rap(irap)
|
|
ENDDO
|
|
!
|
|
! Determine in which position to put this mode. count_rap keep into
|
|
! account how many modes of that representation we have already
|
|
! assigned
|
|
!
|
|
pos=init+count_rap(rap)
|
|
!
|
|
! the eigenvalue, the mode and the number of its representation are
|
|
! copied in the auxiliary list
|
|
!
|
|
!
|
|
eig(pos)=eigen(imode)
|
|
phi(:,pos)=u(:,imode)
|
|
num_rap_aux(pos)=num_rap_mode(imode)
|
|
!
|
|
! Update the number of modes already found for a representation
|
|
!
|
|
count_rap(rap)=count_rap(rap)+1
|
|
ENDDO
|
|
!
|
|
! Copy the new exchanged array in the old ones
|
|
!
|
|
eigen=eig
|
|
u=phi
|
|
num_rap_mode=num_rap_aux
|
|
!
|
|
! If two almost degenerate modes have been assigned to different
|
|
! representations, we force them to be close in the list independently
|
|
! from their representation in order not to change previous behaviour
|
|
! of the code. These instructions should not be needed.
|
|
!
|
|
DO imode=1,3*nat-1
|
|
DO jmode = imode+1, 3*nat
|
|
IF ((num_rap_mode(imode) /= num_rap_mode(jmode)).AND. &
|
|
(ABS(eigen(imode) - eigen(jmode))/ &
|
|
(ABS(eigen(imode)) + ABS (eigen (jmode) )) < 1.d-4) ) THEN
|
|
WRITE(stdout,'("Eigenvectors exchange needed",2i5)') imode, &
|
|
jmode
|
|
eig(1)=eigen(jmode)
|
|
phi(:,1)=u(:,jmode)
|
|
num_rap_aux(1)=num_rap_mode(jmode)
|
|
eigen(jmode)=eigen(imode+1)
|
|
u(:,jmode)=u(:,imode+1)
|
|
num_rap_mode(jmode)=num_rap_mode(imode+1)
|
|
eigen(imode+1)=eig(1)
|
|
u(:,imode+1)=phi(:,1)
|
|
num_rap_mode(imode+1)=num_rap_aux(1)
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
|
|
ENDIF
|
|
!
|
|
! Here we count the irreducible representations and their dimensions
|
|
do imode = 1, 3 * nat
|
|
! initialization
|
|
npert (imode) = 0
|
|
enddo
|
|
nirr = 1
|
|
npert (1) = 1
|
|
do imode = 2, 3 * nat
|
|
if (abs (eigen (imode) - eigen (imode-1) ) / (abs (eigen (imode) ) &
|
|
+ abs (eigen (imode-1) ) ) .lt.1.d-4) then
|
|
npert (nirr) = npert (nirr) + 1
|
|
else
|
|
nirr = nirr + 1
|
|
npert (nirr) = 1
|
|
endif
|
|
enddo
|
|
|
|
IF (search_sym.AND.nspin_mag/=4) THEN
|
|
!
|
|
! Here we set the name of the representation for each mode
|
|
!
|
|
name_rap_mode=' '
|
|
DO imode = 1, 3*nat
|
|
IF (num_rap_mode(imode) > 0 ) &
|
|
name_rap_mode(imode)=name_rap(num_rap_mode(imode))
|
|
ENDDO
|
|
ENDIF
|
|
! Note: the following lines are for testing purposes
|
|
!
|
|
! nirr = 1
|
|
! npert(1)=1
|
|
! do na=1,3*nat/2
|
|
! u(na,1)=(0.d0,0.d0)
|
|
! u(na+3*nat/2,1)=(0.d0,0.d0)
|
|
! enddo
|
|
! u(1,1)=(-1.d0,0.d0)
|
|
! WRITE( stdout,'(" Setting mode for testing ")')
|
|
! do na=1,3*nat
|
|
! WRITE( stdout,*) u(na,1)
|
|
! enddo
|
|
! nsymq=1
|
|
! minus_q=.false.
|
|
|
|
!
|
|
! parallel stuff: first node broadcasts everything to all nodes
|
|
!
|
|
400 continue
|
|
call mp_bcast (gi, ionode_id, intra_image_comm)
|
|
call mp_bcast (gimq, ionode_id, intra_image_comm)
|
|
call mp_bcast (u, ionode_id, intra_image_comm)
|
|
call mp_bcast (nsymq, ionode_id, intra_image_comm)
|
|
call mp_bcast (npert, ionode_id, intra_image_comm)
|
|
call mp_bcast (nirr, ionode_id, intra_image_comm)
|
|
call mp_bcast (irotmq, ionode_id, intra_image_comm)
|
|
call mp_bcast (minus_q, ionode_id, intra_image_comm)
|
|
call mp_bcast (num_rap_mode, ionode_id, intra_image_comm)
|
|
call mp_bcast (name_rap_mode, ionode_id, intra_image_comm)
|
|
|
|
return
|
|
end subroutine set_irr_new
|