quantum-espresso/PHonon/Doc/INPUT_DYNMAT.def

171 lines
5.4 KiB
Modula-2

input_description -distribution {Quantum Espresso} -package PWscf -program dynmat.x {
toc {}
intro {
@b {Purpose of dynmat.x:}
- reads a dynamical matrix file produced by the phonon code
- adds the non-analytical part (if Z* and epsilon are read from
file), applies the chosen Acoustic Sum Rule (if q=0)
- diagonalise the dynamical matrix
- calculates IR and Raman cross sections (if Z* and Raman
tensors are read from file, respectively)
- writes the results to files, both for inspection and for
plotting
@b {Structure of the input data:}
========================================================================
@b &INPUT
...specs of namelist variables...
@b /
}
namelist INPUT {
var fildyn -type CHARACTER {
info {
input file containing the dynamical matrix
}
default { 'matdyn' }
}
dimension q -start 1 -end 3 -type REAL {
info {
calculate LO modes (add non-analytic terms) along the direction q (Cartesian axis)
}
default { q = (0,0,0) }
}
dimension amass -start 1 -end ntyp -type REAL {
info {
mass for each atom type
}
default { amass is read from file @ref fildyn }
}
var asr -type CHARACTER {
default { 'no' }
options {
info {
Indicates the type of Acoustic Sum Rule imposed.
Allowed values:
}
opt -val 'no' {
no Acoustic Sum Rules imposed @b (default)
}
opt -val 'simple' {
previous implementation of the asr used
(3 translational asr imposed by correction of
the diagonal elements of the dynamical matrix)
}
opt -val 'crystal' {
3 translational asr imposed by optimized
correction of the dyn. matrix (projection)
}
opt -val 'one-dim' {
3 translational asr + 1 rotational asr imposed
by optimized correction of the dyn. mat. (the
rotation axis is the direction of periodicity; it
will work only if this axis considered is one of
the Cartesian axis).
}
opt -val 'zero-dim' {
3 translational asr + 3 rotational asr imposed
by optimized correction of the dyn. mat.
}
info {
Note that in certain cases, not all the rotational asr
can be applied (e.g. if there are only 2 atoms in a
molecule or if all the atoms are aligned, etc.). In
these cases the supplementary asr are canceled during
the orthonormalization procedure (see below).
Finally, in all cases except @b 'no' a simple correction
on the effective charges is performed (same as in the
previous implementation).
}
}
}
var axis -type INTEGER {
info {
indicates the rotation axis for a 1D system (1=Ox, 2=Oy, 3=Oz)
}
default { 3 }
}
var lperm -type LOGICAL {
info {
if .true. then calculate Gamma-point mode contributions to
dielectric permittivity tensor
}
default { .false. }
}
var lplasma -type LOGICAL {
info {
if .true. then calculate Gamma-point mode effective plasma
frequencies, automatically triggers @ref lperm = .true.
}
default { .false. }
}
var filout -type CHARACTER {
info {
output file containing phonon frequencies and normalized
phonon displacements (i.e. eigenvectors divided by the
square root of the mass and then normalized; they are
not orthogonal)
}
default { 'dynmat.out' }
}
var fileig -type CHARACTER {
info {
output file containing phonon frequencies and eigenvectors
of the dynamical matrix (they are orthogonal)
}
default { ' ' }
}
var filmol -type CHARACTER {
info {
as above, in a format suitable for molden
}
default { 'dynmat.mold' }
}
var filxsf -type CHARACTER {
info {
as above, in axsf format suitable for xcrysden
}
default { 'dynmat.axsf' }
}
var loto_2d -type LOGICAL {
info {
set to .true. to activate two-dimensional treatment of LO-TO splitting.
}
default { '.false.' }
}
var el_ph_nsig -type INTEGER {
info {
The number of double-delta smearing values used in an electron-phonon
coupling calculation.
}
}
var el_ph_sigma -type REAL {
info {
The spacing of double-delta smearing values used in an electron-phonon
coupling calculation.
}
}
}
}