quantum-espresso/Modules/xc_lda_lsda_drivers.f90

703 lines
19 KiB
Fortran

!
! Copyright (C) 2004-2016 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
MODULE xc_lda_lsda
!
USE kinds, ONLY: DP
USE funct, ONLY: get_iexch, get_icorr, is_libxc, &
exx_is_active, get_exx_fraction, &
get_finite_size_cell_volume
!
IMPLICIT NONE
!
PRIVATE
SAVE
!
! LDA and LSDA exchange-correlation drivers
PUBLIC :: xc, xc_lda, xc_lsda
PUBLIC :: change_threshold_lda
!
! density threshold (set to default value)
REAL(DP) :: rho_threshold = 1.E-10_DP
!
CONTAINS
!
!
!-----------------------------------------------------------------------
SUBROUTINE change_threshold_lda( rho_thr_in )
!--------------------------------------------------------------------
!! Change rho threshold.
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: rho_thr_in
!
rho_threshold = rho_thr_in
!
RETURN
!
END SUBROUTINE
!
!
!---------------------------------------------------------------------------
SUBROUTINE xc( length, sr_d, sv_d, rho_in, ex_out, ec_out, vx_out, vc_out )
!-------------------------------------------------------------------------
!! Wrapper routine. Calls xc-driver routines from internal libraries
!! of q-e or from the external libxc, depending on the input choice.
!
!! NOTE: look at 'PP/src/benchmark_libxc.f90' to see the differences
!! between q-e and libxc.
!
#if defined(__LIBXC)
USE xc_f90_types_m
USE xc_f90_lib_m
#endif
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
INTEGER, INTENT(IN) :: sr_d
!! spin dimension of rho
INTEGER, INTENT(IN) :: sv_d
!! spin dimension of v
REAL(DP), INTENT(IN) :: rho_in(length,sr_d)
!! Charge density
REAL(DP), INTENT(OUT) :: ex_out(length)
!! \(\epsilon_x(rho)\) ( NOT \(E_x(\text{rho})\) )
REAL(DP), INTENT(OUT) :: vx_out(length,sv_d)
!! \(dE_x(\text{rho})/d\text{rho} ( NOT d\epsilon_x(\text{rho})/d\text{rho} )
REAL(DP), INTENT(OUT) :: ec_out(length)
!! \(\epsilon_c(rho)\) ( NOT \(E_c(\text{rho})\) )
REAL(DP), INTENT(OUT) :: vc_out(length,sv_d)
!! \(dE_c(\text{rho})/d\text{rho} ( NOT d\epsilon_c(\text{rho})/d\text{rho} )
!
! ... local variables
!
#if defined(__LIBXC)
TYPE(xc_f90_pointer_t) :: xc_func
TYPE(xc_f90_pointer_t) :: xc_info1, xc_info2
INTEGER :: fkind_x
REAL(DP) :: amag
REAL(DP), ALLOCATABLE :: rho_lxc(:)
REAL(DP), ALLOCATABLE :: vx_lxc(:), vc_lxc(:)
#endif
!
REAL(DP), ALLOCATABLE :: arho(:), zeta(:)
!
INTEGER :: ir, iexch, icorr
!
iexch = get_iexch()
icorr = get_icorr()
!
ex_out = 0.0_DP ; vx_out = 0.0_DP
ec_out = 0.0_DP ; vc_out = 0.0_DP
!
#if defined(__LIBXC)
!
IF ( ANY(is_libxc(1:2)) ) THEN
!
ALLOCATE( rho_lxc(length*sv_d) )
ALLOCATE( vx_lxc(length*sv_d), vc_lxc(length*sv_d) )
!
! ... set libxc input
SELECT CASE( sr_d )
CASE( 1 )
!
rho_lxc(:) = ABS(rho_in(:,1))
!
CASE( 2 )
!
DO ir = 1, length
rho_lxc(2*ir-1) = (rho_in(ir,1) + rho_in(ir,2)) * 0.5_DP
rho_lxc(2*ir) = (rho_in(ir,1) - rho_in(ir,2)) * 0.5_DP
ENDDO
!
CASE( 4 )
!
DO ir = 1, length
amag = SQRT( SUM(rho_in(ir,2:4)**2) )
rho_lxc(2*ir-1) = (rho_in(ir,1) + amag) * 0.5_DP
rho_lxc(2*ir) = (rho_in(ir,1) - amag) * 0.5_DP
ENDDO
!
CASE DEFAULT
!
CALL errore( 'xc_LDA', 'Wrong number of spin dimensions', 1 )
!
END SELECT
!
ENDIF
!
!
! ... EXCHANGE
IF ( is_libxc(1) ) THEN
CALL xc_f90_func_init( xc_func, xc_info1, iexch, sv_d )
CALL xc_f90_func_set_dens_threshold( xc_func, rho_threshold )
fkind_x = xc_f90_info_kind( xc_info1 )
CALL xc_f90_lda_exc_vxc( xc_func, length, rho_lxc(1), ex_out(1), vx_lxc(1) )
CALL xc_f90_func_end( xc_func )
ENDIF
!
! ... CORRELATION
IF ( is_libxc(2) ) THEN
CALL xc_f90_func_init( xc_func, xc_info2, icorr, sv_d )
CALL xc_f90_func_set_dens_threshold( xc_func, rho_threshold )
CALL xc_f90_lda_exc_vxc( xc_func, length, rho_lxc(1), ec_out(1), vc_lxc(1) )
CALL xc_f90_func_end( xc_func )
ENDIF
!
IF ( ((.NOT.is_libxc(1)) .OR. (.NOT.is_libxc(2))) &
.AND. fkind_x/=XC_EXCHANGE_CORRELATION ) THEN
!
SELECT CASE( sr_d )
CASE( 1 )
!
CALL xc_lda( length, ABS(rho_in(:,1)), ex_out, ec_out, vx_out(:,1), vc_out(:,1) )
!
CASE( 2 )
!
ALLOCATE( arho(length), zeta(length) )
arho = ABS(rho_in(:,1))
WHERE (arho > rho_threshold) zeta(:) = rho_in(:,2) / arho(:)
CALL xc_lsda( length, arho, zeta, ex_out, ec_out, vx_out, vc_out )
DEALLOCATE( arho, zeta )
!
CASE( 4 )
!
ALLOCATE( arho(length), zeta(length) )
arho = ABS( rho_in(:,1) )
WHERE (arho > rho_threshold) zeta(:) = SQRT( rho_in(:,2)**2 + rho_in(:,3)**2 + &
rho_in(:,4)**2 ) / arho(:) ! amag/arho
CALL xc_lsda( length, arho, zeta, ex_out, ec_out, vx_out, vc_out )
DEALLOCATE( arho, zeta )
!
CASE DEFAULT
!
CALL errore( 'xc_LDA', 'Wrong ns input', 2 )
!
END SELECT
!
ENDIF
!
! ... fill output arrays
!
IF (sv_d == 1) THEN
IF (is_libxc(1)) vx_out(:,1) = vx_lxc(:)
IF (is_libxc(2)) vc_out(:,1) = vc_lxc(:)
ELSE
IF (is_libxc(1)) THEN
DO ir = 1, length
vx_out(ir,1) = vx_lxc(2*ir-1)
vx_out(ir,2) = vx_lxc(2*ir)
ENDDO
ENDIF
IF (is_libxc(2)) THEN
DO ir = 1, length
vc_out(ir,1) = vc_lxc(2*ir-1)
vc_out(ir,2) = vc_lxc(2*ir)
ENDDO
ENDIF
ENDIF
!
IF (ANY(is_libxc(1:2))) THEN
DEALLOCATE( rho_lxc )
DEALLOCATE( vx_lxc, vc_lxc )
ENDIF
!
#else
!
SELECT CASE( sr_d )
CASE( 1 )
!
CALL xc_lda( length, ABS(rho_in(:,1)), ex_out, ec_out, vx_out(:,1), vc_out(:,1) )
!
CASE( 2 )
!
ALLOCATE( arho(length), zeta(length) )
!
arho = ABS(rho_in(:,1))
WHERE (arho > rho_threshold) zeta(:) = rho_in(:,2) / arho(:)
!
CALL xc_lsda( length, arho, zeta, ex_out, ec_out, vx_out, vc_out )
!
DEALLOCATE( arho, zeta )
!
CASE( 4 )
!
ALLOCATE( arho(length), zeta(length) )
!
arho = ABS( rho_in(:,1) )
WHERE (arho > rho_threshold) zeta(:) = SQRT( rho_in(:,2)**2 + rho_in(:,3)**2 + &
rho_in(:,4)**2 ) / arho(:) ! amag/arho
!
CALL xc_lsda( length, arho, zeta, ex_out, ec_out, vx_out, vc_out )
!
DEALLOCATE( arho, zeta )
!
CASE DEFAULT
!
CALL errore( 'xc_LDA', 'Wrong ns input', 2 )
!
END SELECT
!
#endif
!
!
RETURN
!
END SUBROUTINE xc
!
!----------------------------------------------------------------------------
!------- LDA-LSDA DRIVERS --------------------------------------------------
!----------------------------------------------------------------------------
!
!----------------------------------------------------------------------------
SUBROUTINE xc_lda( length, rho_in, ex_out, ec_out, vx_out, vc_out )
!--------------------------------------------------------------------------
!! LDA exchange and correlation functionals - Hartree a.u.
!
!! * Exchange:
!! * Slater;
!! * relativistic Slater.
!! * Correlation:
!! * Ceperley-Alder (Perdew-Zunger parameters);
!! * Vosko-Wilk-Nusair;
!! * Lee-Yang-Parr;
!! * Perdew-Wang;
!! * Wigner;
!! * Hedin-Lundqvist;
!! * Ortiz-Ballone (Perdew-Zunger formula);
!! * Ortiz-Ballone (Perdew-Wang formula);
!! * Gunnarsson-Lundqvist.
!
!! NOTE:
!! $$ E_x = \int E_x(\text{rho}) dr, E_x(\text{rho}) =
!! \text{rho}\epsilon_c(\text{rho})\ . $$
!! Same for correlation.
!
USE exch_lda
USE corr_lda
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
REAL(DP), INTENT(IN), DIMENSION(length) :: rho_in
!! Charge density
REAL(DP), INTENT(OUT), DIMENSION(length) :: ex_out
!! \(\epsilon_x(rho)\) ( NOT \(E_x(\text{rho})\) )
REAL(DP), INTENT(OUT), DIMENSION(length) :: vx_out
!! \(dE_x(\text{rho})/d\text{rho}\) ( NOT \(d\epsilon_x(\text{rho})/d\text{rho}\) )
REAL(DP), INTENT(OUT), DIMENSION(length) :: ec_out
!! \(\epsilon_c(rho)\) ( NOT \(E_c(\text{rho})\) )
REAL(DP), INTENT(OUT), DIMENSION(length) :: vc_out
!! \(dE_c(\text{rho})/d\text{rho}\) ( NOT \(d\epsilon_c(\text{rho})/d\text{rho}\) )
!
! ... local variables
!
INTEGER :: ir, iexch, icorr
REAL(DP) :: rho, rs
REAL(DP) :: ex, ec, ec_
REAL(DP) :: vx, vc, vc_
REAL(DP) :: exx_fraction
REAL(DP) :: finite_size_cell_volume
LOGICAL :: exx_started, is_there_finite_size_corr
REAL(DP), PARAMETER :: third = 1.0_DP/3.0_DP, &
pi34 = 0.6203504908994_DP, e2 = 2.0_DP
! pi34 = (3/4pi)^(1/3)
!
#if defined(_OPENMP)
INTEGER :: ntids
INTEGER, EXTERNAL :: omp_get_num_threads
!
ntids = omp_get_num_threads()
#endif
!
iexch = get_iexch()
icorr = get_icorr()
exx_started = exx_is_active()
exx_fraction = get_exx_fraction()
IF (iexch==8 .OR. icorr==10) THEN
CALL get_finite_size_cell_volume( is_there_finite_size_corr, &
finite_size_cell_volume )
!
IF (.NOT. is_there_finite_size_corr) CALL errore( 'XC',&
'finite size corrected exchange used w/o initialization', 1 )
ENDIF
!
!$omp parallel if(ntids==1)
!$omp do private( rho, rs, ex, ec, ec_, vx, vc, vc_ )
DO ir = 1, length
!
rho = ABS(rho_in(ir))
!
! ... RHO THRESHOLD
!
IF ( rho > rho_threshold ) THEN
rs = pi34 / rho**third
ELSE
ex_out(ir) = 0.0_DP ; ec_out(ir) = 0.0_DP
vx_out(ir) = 0.0_DP ; vc_out(ir) = 0.0_DP
CYCLE
ENDIF
!
! ... EXCHANGE
!
SELECT CASE( iexch )
CASE( 1 ) ! 'sla'
!
CALL slater( rs, ex, vx )
!
CASE( 2 ) ! 'sl1'
!
CALL slater1( rs, ex, vx )
!
CASE( 3 ) ! 'rxc'
!
CALL slater_rxc( rs, ex, vx )
!
CASE( 4, 5 ) ! 'oep','hf'
!
IF ( exx_started ) THEN
ex = 0.0_DP
vx = 0.0_DP
ELSE
CALL slater( rs, ex, vx )
ENDIF
!
CASE( 6, 7 ) ! 'pb0x' or 'DF-cx-0', or 'DF2-0',
! ! 'B3LYP'
CALL slater( rs, ex, vx )
IF ( exx_started ) THEN
ex = (1.0_DP - exx_fraction) * ex
vx = (1.0_DP - exx_fraction) * vx
ENDIF
!
CASE( 8 ) ! 'sla+kzk'
!
CALL slaterKZK( rs, ex, vx, finite_size_cell_volume )
!
CASE( 9 ) ! 'X3LYP'
!
CALL slater( rs, ex, vx )
IF ( exx_started ) THEN
ex = (1.0_DP - exx_fraction) * ex
vx = (1.0_DP - exx_fraction) * vx
ENDIF
!
CASE DEFAULT
!
ex = 0.0_DP
vx = 0.0_DP
!
END SELECT
!
!
! ... CORRELATION
!
SELECT CASE( icorr )
CASE( 1 )
!
CALL pz( rs, 1, ec, vc )
!
CASE( 2 )
!
CALL vwn( rs, ec, vc )
!
CASE( 3 )
!
CALL lyp( rs, ec, vc )
!
CASE( 4 )
!
CALL pw( rs, 1, ec, vc )
!
CASE( 5 )
!
CALL wignerc( rs, ec, vc )
!
CASE( 6 )
!
CALL hl( rs, ec, vc )
!
CASE( 7 )
!
CALL pz( rs, 2, ec, vc )
!
CASE( 8 )
!
CALL pw( rs, 2, ec, vc )
!
CASE( 9 )
!
CALL gl( rs, ec, vc )
!
CASE( 10 )
!
CALL pzKZK( rs, ec, vc, finite_size_cell_volume )
!
CASE( 11 )
!
CALL vwn1_rpa( rs, ec, vc )
!
CASE( 12 ) ! 'B3LYP'
!
CALL vwn( rs, ec, vc )
ec = 0.19_DP * ec
vc = 0.19_DP * vc
!
CALL lyp( rs, ec_, vc_ )
ec = ec + 0.81_DP * ec_
vc = vc + 0.81_DP * vc_
!
CASE( 13 ) ! 'B3LYP-V1R'
!
CALL vwn1_rpa ( rs, ec, vc )
ec = 0.19_DP * ec
vc = 0.19_DP * vc
!
CALL lyp( rs, ec_, vc_ )
ec = ec + 0.81_DP * ec_
vc = vc + 0.81_DP * vc_
!
CASE( 14 ) ! 'X3LYP'
!
CALL vwn1_rpa( rs, ec, vc )
ec = 0.129_DP * ec
vc = 0.129_DP * vc
!
CALL lyp( rs, ec_, vc_ )
ec = ec + 0.871_DP * ec_
vc = vc + 0.871_DP * vc_
!
CASE DEFAULT
!
ec = 0.0_DP
vc = 0.0_DP
!
END SELECT
!
ex_out(ir) = ex ; ec_out(ir) = ec
vx_out(ir) = vx ; vc_out(ir) = vc
!
ENDDO
!$omp end do
!$omp end parallel
!
!
RETURN
!
END SUBROUTINE xc_lda
!
!
!-----------------------------------------------------------------------------
SUBROUTINE xc_lsda( length, rho_in, zeta_in, ex_out, ec_out, vx_out, vc_out )
!-----------------------------------------------------------------------------
!! LSD exchange and correlation functionals - Hartree a.u.
!
!! * Exchange:
!! * Slater (alpha=2/3).
!! * Correlation:
!! * Ceperley & Alder (Perdew-Zunger parameters);
!! * Perdew & Wang.
!
USE exch_lda
USE corr_lda
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
REAL(DP), INTENT(IN), DIMENSION(length) :: rho_in
!! Total charge density
REAL(DP), INTENT(IN), DIMENSION(length) :: zeta_in
!! zeta = mag / rho_tot
REAL(DP), INTENT(OUT), DIMENSION(length) :: ex_out
!! \(\epsilon_x(rho)\) ( NOT \(E_x(\text{rho})\) )
REAL(DP), INTENT(OUT), DIMENSION(length) :: ec_out
!! \(\epsilon_c(rho)\) ( NOT \(E_c(\text{rho})\) )
REAL(DP), INTENT(OUT), DIMENSION(length,2) :: vx_out
!! \(dE_x(\text{rho})/d\text{rho}\) ( NOT \(d\epsilon_x(\text{rho})/d\text{rho}\) )
REAL(DP), INTENT(OUT), DIMENSION(length,2) :: vc_out
!! \(dE_c(\text{rho})/d\text{rho}\) ( NOT \(d\epsilon_c(\text{rho})/d\text{rho}\) )
!
! ... local variables
!
INTEGER :: ir, iexch, icorr
REAL(DP) :: rho, rs, zeta
REAL(DP) :: ex, ec, ec_
REAL(DP) :: vx(2), vc(2), vc_(2)
REAL(DP) :: exx_fraction
LOGICAL :: exx_started
!
REAL(DP), PARAMETER :: third = 1.0_DP/3.0_DP, &
pi34 = 0.6203504908994_DP
! pi34 = (3/4pi)^(1/3)
!
#if defined(_OPENMP)
INTEGER :: ntids
INTEGER, EXTERNAL :: omp_get_num_threads
!
ntids = omp_get_num_threads()
#endif
!
iexch = get_iexch()
icorr = get_icorr()
exx_started = exx_is_active()
exx_fraction = get_exx_fraction()
!
!$omp parallel if(ntids==1)
!$omp do private( rho, rs, zeta, ex, ec, ec_, vx, vc, vc_ )
DO ir = 1, length
!
zeta = zeta_in(ir)
IF (ABS(zeta) > 1.D0) zeta = SIGN( 1.D0, zeta )
!
rho = ABS(rho_in(ir))
!
IF ( rho > rho_threshold ) THEN
rs = pi34 / rho**third
ELSE
ex_out(ir) = 0.0_DP ; vx_out(ir,:) = 0.0_DP
ec_out(ir) = 0.0_DP ; vc_out(ir,:) = 0.0_DP
CYCLE
ENDIF
!
!
! ... EXCHANGE
!
SELECT CASE( iexch )
CASE( 1 ) ! 'sla'
!
CALL slater_spin( rho, zeta, ex, vx(1), vx(2) )
!
CASE( 2 ) ! 'sl1'
!
CALL slater1_spin( rho, zeta, ex, vx(1), vx(2) )
!
CASE( 3 ) ! 'rxc'
!
CALL slater_rxc_spin( rho, zeta, ex, vx(1), vx(2) )
!
CASE( 4, 5 ) ! 'oep','hf'
!
IF ( exx_started ) THEN
ex = 0.0_DP
vx = 0.0_DP
ELSE
CALL slater_spin( rho, zeta, ex, vx(1), vx(2) )
ENDIF
!
CASE( 6 ) ! 'pb0x'
!
CALL slater_spin( rho, zeta, ex, vx(1), vx(2) )
IF ( exx_started ) THEN
ex = (1.0_DP - exx_fraction) * ex
vx = (1.0_DP - exx_fraction) * vx
ENDIF
!
CASE( 7 ) ! 'B3LYP'
!
CALL slater_spin( rho, zeta, ex, vx(1), vx(2) )
IF ( exx_started ) THEN
ex = (1.0_DP - exx_fraction) * ex
vx = (1.0_DP - exx_fraction) * vx
ENDIF
!
CASE( 9 ) ! 'X3LYP'
!
CALL slater_spin( rho, zeta, ex, vx(1), vx(2) )
IF ( exx_started ) THEN
ex = (1.0_DP - exx_fraction) * ex
vx = (1.0_DP - exx_fraction) * vx
ENDIF
!
CASE DEFAULT
!
ex = 0.0_DP
vx = 0.0_DP
!
END SELECT
!
!
! ... CORRELATION
!
SELECT CASE( icorr )
CASE( 0 )
!
ec = 0.0_DP
vc = 0.0_DP
!
CASE( 1 )
!
CALL pz_spin( rs, zeta, ec, vc(1), vc(2) )
!
CASE( 2 )
!
CALL vwn_spin( rs, zeta, ec, vc(1), vc(2) )
!
CASE( 3 )
!
CALL lsd_lyp( rho, zeta, ec, vc(1), vc(2) ) ! from CP/FPMD (more_functionals)
!
CASE( 4 )
!
CALL pw_spin( rs, zeta, ec, vc(1), vc(2) )
!
CASE( 12 ) ! 'B3LYP'
!
CALL vwn_spin( rs, zeta, ec, vc(1), vc(2) )
ec = 0.19_DP * ec
vc = 0.19_DP * vc
!
CALL lsd_lyp( rho, zeta, ec_, vc_(1), vc_(2) ) ! from CP/FPMD (more_functionals)
ec = ec + 0.81_DP * ec_
vc = vc + 0.81_DP * vc_
!
CASE( 13 ) ! 'B3LYP-V1R'
!
CALL vwn1_rpa_spin( rs, zeta, ec, vc(1), vc(2) )
ec = 0.19_DP * ec
vc = 0.19_DP * vc
!
CALL lsd_lyp( rho, zeta, ec_, vc_(1), vc_(2) ) ! from CP/FPMD (more_functionals)
ec = ec + 0.81_DP * ec_
vc = vc + 0.81_DP * vc_
!
CASE( 14 ) ! 'X3LYP
!
CALL vwn1_rpa_spin( rs, zeta, ec, vc(1), vc(2) )
ec = 0.129_DP * ec
vc = 0.129_DP * vc
!
CALL lsd_lyp( rho, zeta, ec_, vc_(1), vc_(2) ) ! from CP/FPMD (more_functionals)
ec = ec + 0.871_DP * ec_
vc = vc + 0.871_DP * vc_
!
CASE DEFAULT
!
CALL errore( 'xc_lda_lsda_drivers (xc_lsda)', 'not implemented', icorr )
!
END SELECT
!
ex_out(ir) = ex ; vx_out(ir,:) = vx(:)
ec_out(ir) = ec ; vc_out(ir,:) = vc(:)
!
ENDDO
!$omp end do
!$omp end parallel
!
!
RETURN
!
END SUBROUTINE xc_lsda
!
!
END MODULE xc_lda_lsda