mirror of https://gitlab.com/QEF/q-e.git
139 lines
4.3 KiB
Fortran
139 lines
4.3 KiB
Fortran
!
|
|
! Copyright (C) 2001-2012 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE simpson(mesh, func, rab, asum)
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! simpson's rule integration. On input:
|
|
! mesh = the number of grid points (should be odd)
|
|
! func(i)= function to be integrated
|
|
! rab(i) = r(i) * dr(i)/di * di
|
|
! For the logarithmic grid not including r=0 :
|
|
! r(i) = r_0*exp((i-1)*dx) ==> rab(i)=r(i)*dx
|
|
! For the logarithmic grid including r=0 :
|
|
! r(i) = a(exp((i-1)*dx)-1) ==> rab(i)=(r(i)+a)*dx
|
|
! Output in asum = \sum_i c_i f(i)*rab(i) = \int_0^\infty f(r) dr
|
|
! where c_i are alternativaly 2/3, 4/3 except c_1 = c_mesh = 1/3
|
|
!
|
|
USE kinds, ONLY: DP
|
|
IMPLICIT NONE
|
|
INTEGER, INTENT(in) :: mesh
|
|
real(DP), INTENT(in) :: rab (mesh), func (mesh)
|
|
real(DP), INTENT(out):: asum
|
|
!
|
|
real(DP) :: f1, f2, f3, r12
|
|
INTEGER :: i
|
|
!
|
|
asum = 0.0d0
|
|
r12 = 1.0d0 / 3.0d0
|
|
f3 = func (1) * rab (1) * r12
|
|
|
|
DO i = 2, mesh - 1, 2
|
|
f1 = f3
|
|
f2 = func (i) * rab (i) * r12
|
|
f3 = func (i + 1) * rab (i + 1) * r12
|
|
asum = asum + f1 + 4.0d0 * f2 + f3
|
|
ENDDO
|
|
!
|
|
! if mesh is not odd, use open formula instead:
|
|
! ... 2/3*f(n-5) + 4/3*f(n-4) + 13/12*f(n-3) + 0*f(n-2) + 27/12*f(n-1)
|
|
!!! Under testing
|
|
!
|
|
!IF ( MOD(mesh,2) == 0 ) THEN
|
|
! print *, 'mesh even: correction:', f1*5.d0/4.d0-4.d0*f2+23.d0*f3/4.d0, &
|
|
! func(mesh)*rab(mesh), asum
|
|
! asum = asum + f1*5.d0/4.d0 - 4.d0*f2 + 23.d0*f3/4.d0
|
|
!END IF
|
|
|
|
RETURN
|
|
END SUBROUTINE simpson
|
|
|
|
!=-----------------------------------------------------------------------
|
|
SUBROUTINE simpson_cp90( mesh, func, rab, asum )
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! This routine computes the integral of a function defined on a
|
|
! logaritmic mesh, by using the open simpson formula given on
|
|
! pag. 109 of Numerical Recipes. In principle it is used to
|
|
! perform integrals from zero to infinity. The first point of
|
|
! the function should be the closest to zero but not the value
|
|
! in zero. The formula used here automatically includes the
|
|
! contribution from the zero point and no correction is required.
|
|
!
|
|
! Input as "simpson". At least 8 integrating points are required.
|
|
!
|
|
! last revised 12 May 1995 by Andrea Dal Corso
|
|
!
|
|
USE kinds, ONLY: DP
|
|
IMPLICIT NONE
|
|
INTEGER, INTENT(in) :: mesh
|
|
real(DP), INTENT(in) :: rab (mesh), func (mesh)
|
|
real(DP), INTENT(out):: asum
|
|
!
|
|
real(DP) :: c(4)
|
|
INTEGER ::i
|
|
!
|
|
IF ( mesh < 8 ) CALL errore ('simpson_cp90','few mesh points',8)
|
|
|
|
c(1) = 109.0d0 / 48.d0
|
|
c(2) = -5.d0 / 48.d0
|
|
c(3) = 63.d0 / 48.d0
|
|
c(4) = 49.d0 / 48.d0
|
|
|
|
asum = ( func(1)*rab(1) + func(mesh )*rab(mesh ) )*c(1) &
|
|
+ ( func(2)*rab(2) + func(mesh-1)*rab(mesh-1) )*c(2) &
|
|
+ ( func(3)*rab(3) + func(mesh-2)*rab(mesh-2) )*c(3) &
|
|
+ ( func(4)*rab(4) + func(mesh-3)*rab(mesh-3) )*c(4)
|
|
DO i=5,mesh-4
|
|
asum = asum + func(i)*rab(i)
|
|
ENDDO
|
|
|
|
RETURN
|
|
END SUBROUTINE simpson_cp90
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE herman_skillman_int(mesh,func,rab,asum)
|
|
!-----------------------------------------------------------------------
|
|
! simpson rule integration for herman skillman mesh (obsolescent)
|
|
! Input as in "simpson". BEWARE: "func" is overwritten!!!
|
|
!
|
|
USE kinds, ONLY: DP
|
|
IMPLICIT NONE
|
|
INTEGER, INTENT(in) :: mesh
|
|
real(DP), INTENT(in) :: rab (mesh)
|
|
real(DP), INTENT(inout) :: func (mesh)
|
|
real(DP), INTENT(out):: asum
|
|
!
|
|
INTEGER :: i, j, k, i1, nblock
|
|
REAL(DP) :: a1, a2e, a2o, a2es
|
|
!
|
|
a1=0.0d0
|
|
a2e=0.0d0
|
|
asum=0.0d0
|
|
nblock=mesh/40
|
|
i=1
|
|
func(1)=0.0d0
|
|
DO j=1,nblock
|
|
DO k=1,20
|
|
i=i+2
|
|
i1=i-1
|
|
a2es=a2e
|
|
a2o=func(i1)/12.0d0
|
|
a2e=func(i)/12.0d0
|
|
a1=a1+5.0d0*a2es+8.0d0*a2o-a2e
|
|
func(i1)=asum+a1*rab(i1)
|
|
a1=a1-a2es+8.0d0*a2o+5.0d0*a2e
|
|
func(i)=asum+a1*rab(i)
|
|
ENDDO
|
|
asum=func(i)
|
|
a1=0.0d0
|
|
ENDDO
|
|
!
|
|
RETURN
|
|
END SUBROUTINE herman_skillman_int
|