quantum-espresso/Modules/radial_grids.f90

476 lines
15 KiB
Fortran

!
! Copyright (C) 2004 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
MODULE radial_grids
!============================================================================
!
! Module containing type definitions and auxiliary routines to deal with
! data on logarithmic radial grids.
! Should contain low level routines and no reference to other modules
! (with the possible exception of kinds and parameters) so as to be
! call-able from any other module.
!
! content:
!
! - ndmx : parameter definition max grid dimension
!
! - radial_grid_type : derived type definition for radial grids
!
! - do_mesh : a routine to build the radial mesh
!
! - check_mesh : a routine to check if grid is consistently set
!
! - hartree : a routine that solve the Poisson's equation on radial grid
!
! - series : a simple routine returning the coefficient of the polynomial
! describing the leading behavior of a function f at small r.
!
! - write_grid_on_file, read_grid_from_file : I/O routines
!
!============================================================================
!
USE kinds, ONLY: dp
!
IMPLICIT NONE
!
integer, parameter :: &
ndmx=3500 ! the maximum mesh size
TYPE radial_grid_type
INTEGER :: &
mesh ! the actual number of mesh points
REAL(DP),POINTER :: &
r(:), & ! the radial mesh
r2(:), & ! the square of the radial mesh
rab(:), & ! d r(x) / d x where x is the linear grid
sqr(:), & ! the square root of the radial mesh
rm1(:), & ! 1 / r
rm2(:), & ! 1 / r**2
rm3(:) ! 1 / r**3
REAL(DP) :: &
xmin, & ! the minimum x
rmax, & ! the maximum radial point
zmesh, & ! the ionic charge used for the mesh
dx ! the deltax of the linear mesh
END TYPE radial_grid_type
PRIVATE
PUBLIC :: ndmx, radial_grid_type, &
do_mesh, check_mesh, hartree, series, &
write_grid_on_file, read_grid_from_file, &
allocate_radial_grid,&
deallocate_radial_grid,&
nullify_radial_grid,&
radial_grid_COPY
interface deallocate_radial_grid
module procedure &
deallocate_radial_grid_s,& ! only one
deallocate_radial_grid_v ! an array
end interface
!============================================================================
!
CONTAINS
!
! Build the radial (logarithmic) grid
!
! r(i) = exp ( xmin + (i-1) dx ) / zmesh i=1,mesh
! r2(i) is r(i) square, sqr(i) is sqrt(r(i)) and
! rab(i) is the integration element = r(i)*dx
!
! more general grid definitions are possible but currently not implemented
! (example: Vanderbilt's grid, same as above but starting at r=0)
! r(i) = exp ( xmin ) * ( exp( (i-1)*dx ) - 1.0_dp ) / zmesh
! rab(i) = ( r(i) + exp(xmin)/zmesh ) * dx
!
!---------------------------------------------------------------
subroutine radial_grid_COPY(X,Y)
!---------------------------------------------------------------
type(radial_grid_type),intent(in) :: X
type(radial_grid_type),intent(inout) :: Y
!
call deallocate_radial_grid(Y)
call allocate_radial_grid(Y, X%mesh)
!
Y%r(1:X%mesh) = X%r(1:X%mesh)
Y%r2(1:X%mesh) = X%r2(1:X%mesh)
Y%rab(1:X%mesh) = X%rab(1:X%mesh)
Y%sqr(1:X%mesh) = X%sqr(1:X%mesh)
Y%rm1(1:X%mesh) = X%rm1(1:X%mesh)
Y%rm2(1:X%mesh) = X%rm2(1:X%mesh)
Y%rm3(1:X%mesh) = X%rm3(1:X%mesh)
!
Y%xmin = X%xmin
Y%rmax = X%rmax
Y%zmesh = X%zmesh
Y%dx = X%dx
end subroutine radial_grid_COPY
!
!---------------------------------------------------------------
subroutine allocate_radial_grid(grid,mesh)
!---------------------------------------------------------------
type(radial_grid_type),intent(inout) :: grid
integer,intent(in) :: mesh
if(mesh>ndmx) &
call errore('allocate_radial_grid', 'mesh>ndmx',1)
allocate( &
grid%r(mesh), &
grid%r2(mesh), & ! the square of the radial mesh
grid%rab(mesh), & ! d r(x) / d x where x is the linear grid
grid%sqr(mesh), & ! the square root of the radial mesh
grid%rm1(mesh), & ! 1 / r
grid%rm2(mesh), & ! 1 / r**2
grid%rm3(mesh) ) ! 1 / r**3
grid%mesh = mesh
end subroutine allocate_radial_grid
!
!---------------------------------------------------------------
subroutine deallocate_radial_grid_s(grid)
!---------------------------------------------------------------
type(radial_grid_type),intent(inout) :: grid
if (associated(grid%r)) deallocate(grid%r)
if (associated(grid%r2)) deallocate(grid%r2)
if (associated(grid%rab)) deallocate(grid%rab)
if (associated(grid%sqr)) deallocate(grid%sqr)
if (associated(grid%rm1)) deallocate(grid%rm1)
if (associated(grid%rm2)) deallocate(grid%rm2)
if (associated(grid%rm3)) deallocate(grid%rm3)
grid%mesh = 0
call nullify_radial_grid(grid)
end subroutine deallocate_radial_grid_s
!---------------------------------------------------------------
subroutine deallocate_radial_grid_v(grid)
!---------------------------------------------------------------
type(radial_grid_type),intent(inout) :: grid(:)
integer :: n
do n = 1,size(grid)
call deallocate_radial_grid_s(grid(n))
enddo
end subroutine deallocate_radial_grid_v
!---------------------------------------------------------------
subroutine nullify_radial_grid(grid)
!---------------------------------------------------------------
type(radial_grid_type),intent(inout) :: grid
nullify( &
grid%r, &
grid%r2, & ! the square of the radial mesh
grid%rab, & ! d r(x) / d x where x is the linear grid
grid%sqr, & ! the square root of the radial mesh
grid%rm1, & ! 1 / r
grid%rm2, & ! 1 / r**2
grid%rm3 ) ! 1 / r**3
grid%mesh = -1
end subroutine nullify_radial_grid
!
!---------------------------------------------------------------
subroutine do_mesh(rmax,zmesh,xmin,dx,ibound,grid)
!---------------------------------------------------------------
!
use kinds, only : DP
implicit none
type(radial_grid_type),intent(out) :: grid
integer, intent(in) :: ibound
real(DP),intent(in) :: rmax, zmesh, dx
real(DP),intent(inout):: xmin
real(DP) :: xmax, x
integer :: mesh, i
!
xmax=log(rmax*zmesh)
mesh=(xmax-xmin)/dx+1
!
! mesh must be odd for simpson integration.
!
mesh=2*(mesh/2)+1
if(mesh+1 > ndmx) call errore('do_mesh','ndmx is too small',1)
if(ibound == 1) xmin=xmax-dx*(mesh-1)
!
call deallocate_radial_grid(grid)
call allocate_radial_grid(grid,mesh)
!
do i=1,mesh
x=xmin+DBLE(i-1)*dx
grid%r(i) = exp(x)/zmesh
grid%r2(i) = grid%r(i)*grid%r(i)
grid%rab(i) = grid%r(i)*dx
grid%sqr(i) = sqrt(grid%r(i))
grid%rm1(i) = 1._dp/grid%r(i)
grid%rm2(i) = 1._dp/grid%r(i)**2
grid%rm3(i) = 1._dp/grid%r(i)**3
end do
!
grid%mesh = mesh
grid%dx = dx
grid%xmin = xmin
grid%rmax = rmax
grid%zmesh = zmesh
return
end subroutine do_mesh
!
! check that logarithmic grid is consistently set
!---------------------------------------------------------------
subroutine check_mesh(grid)
!---------------------------------------------------------------
!
use kinds, only : DP
use constants, only : eps8
implicit none
type(radial_grid_type),intent(in) :: grid
integer :: i
if (grid%mesh < 0 ) call errore('check_mesh','grid%mesh < 0 ',1)
do i=1,grid%mesh
if (abs(grid%r2(i)/grid%r(i)**2-1.d0) > eps8 ) &
call errore('check_mesh',' r2(i) is different ',i)
if (abs(grid%sqr(i)/sqrt(grid%r(i))-1.d0) > eps8 ) &
call errore('check_mesh',' sqr(i) is different ',i)
if (abs(grid%rab(i)/(grid%r(i)*grid%dx)-1.d0) > eps8 ) &
call errore('check_mesh',' rab(i) is different ',i)
end do
return
end subroutine check_mesh
!
! Solution of the Poisson's equation on a radial (logarithmic) grid
!---------------------------------------------------------------
subroutine hartree(k,nst,mesh,grid,f,vh)
!---------------------------------------------------------------
!
use kinds, only : DP
! use radial_grids, only: radial_grid_type
implicit none
integer,intent(in):: &
k, & ! input: the k of the equation
nst, & ! input: at low r, f goes as r**nst
mesh ! input: the dimension of the mesh
type(radial_grid_type), intent(in) :: &
grid ! input: the radial grid
real(DP), intent(in):: &
f(mesh) ! input: the 4\pi r2 \rho function
real(DP), intent(out):: &
vh(mesh) ! output: the required solution
!
! local variables
!
integer :: &
k21, & ! 2k+1
nk1, & ! nst-k-1
ierr, & ! integer variable for allocation control
i ! counter
real(DP):: &
c0,c2,c3, & ! coefficients of the polynomial expansion close to r=0
ch, & ! dx squared / 12.0
xkh2, & ! ch * f
ei, di, & ! auxiliary variables for the diagonal and
! off diagonal elements of the matrix
f1, fn, & ! variables used for the boundary condition
vhim1, vhi ! variables for the right hand side
real(DP), allocatable:: &
d(:), & ! the diagonal elements of
! the tridiagonal sys.
e(:) ! the off diagonal elements
! of the trid. sys.
!
! Allocate space for the diagonal and off diagonal elements
!
if (mesh.ne.grid%mesh) call errore('hartree',' grid dimension mismatch',1)
allocate(d(mesh),stat=ierr)
allocate(e(mesh),stat=ierr)
if (ierr.ne.0) call errore('hartree',' error allocating d or e',1)
!
! Find the series expansion of the solution close to r=0
!
k21=2*k+1
nk1=nst-k-1
if(nk1.le.0) then
write(6,100) k,nst
100 format(5x,'stop in "hartree": k=',i3,' nst=',i3)
stop
!else if(nk1.ge.4) then
! not sure whether the following is really correct, but the above wasn't
else if(nk1.ge.3) then
c2=0.0_dp
c3=0.0_dp
else
e(1)=0.0_dp
do i=1,4
d(i)=-k21*f(i)/grid%r(i)**nst
end do
call series(d,grid%r,grid%r2,e(nk1))
c2=e(1)/(4.0_dp*k+6.0_dp)
c3=e(2)/(6.0_dp*k+12.0_dp)
end if
!
! Set the main auxiliary parameters
!
ch=grid%dx*grid%dx/12.0_dp
xkh2=ch*(DBLE(k)+0.5_dp)**2
ei=1.0_dp-xkh2
di=-(2.0_dp+10.0_dp*xkh2)
!
! Set the diagonal and the off diagonal elements of the
! linear system, compute a part of the right hand side
!
do i=2,mesh
d(i)=-di
e(i)=-ei
vh(i)=k21*ch*grid%sqr(i)*f(i)
end do
!
! Use the boundary condition to eliminate the value of the
! solution in the first point from the first equation. This
! part for the diagonal element
!
f1=(grid%sqr(1)/grid%sqr(2))**k21
d(2)=d(2)-ei*f1
!
! Use the boundary condition to eliminate the value of the
! solution in the last point from the last equation
!
fn=(grid%sqr(mesh-1)/grid%sqr(mesh))**k21
d(mesh-1)=d(mesh-1)-ei*fn
!
! In the first point vh(1) has the same definition as in the other points
!
vhim1=k21*ch*grid%sqr(1)*f(1)
!
! Compute the right hand side using the auxiliary quantity vh(i).
!
do i=2,mesh-1
vhi=vh(i)
vh(i)=vhim1+10.0_dp*vhi+vh(i+1)
vhim1=vhi
end do
!
! Use the boundary condition to eliminate the value of the solution in the
! first point from the first equation. This part for the right hand side.
!
vh(2)=vh(2)-ei*grid%sqr(1)**k21*(c2*(grid%r2(2)-grid%r2(1)) &
+c3*(grid%r(2)**3-grid%r(1)**3))
!
! solve the linear system with lapack routine dptsv
!
call dptsv(mesh-2,1,d(2),e(2),vh(2),mesh-2,ierr)
if (ierr.ne.0) call errore('hartree', 'error in lapack', ierr)
!
! Set the value of the solution at the first and last point
! First, find c0 from the solution in the second point
!
c0=vh(2)/grid%sqr(2)**k21-c2*grid%r2(2)-c3*grid%r(2)*grid%r2(2)
!
! and then use the series expansion at the first point
!
vh(1)=grid%sqr(1)**k21*(c0+c2*grid%r2(1)+c3*grid%r(1)**3)
!
! the solution at the last point is given by the boundary
! condition
!
vh(mesh)=vh(mesh-1)*fn
!
! The solution must be divided by r (from the equation)
! and multiplied by the square root of r (from the log
! mesh transformation)
!
do i=1,mesh
vh(i)= vh(i) / grid%sqr(i)
end do
deallocate(e)
deallocate(d)
return
end subroutine hartree
!
! simple routine returning the coefficient of the polynomial
! describing the leading behavior of a function f at small r.
!---------------------------------------------------------------
subroutine series(f,r,r2,b)
!---------------------------------------------------------------
!
use kinds, only : DP
implicit none
real(DP):: dr21,dr31,dr32,dr41,dr42,dr43,df21,df32,df43, &
ddf42,ddf31
real(DP):: f(4),r(4),r2(4),b(0:3)
dr21=r(2)-r(1)
dr31=r(3)-r(1)
dr32=r(3)-r(2)
dr41=r(4)-r(1)
dr42=r(4)-r(2)
dr43=r(4)-r(3)
df21=(f(2)-f(1))/dr21
df32=(f(3)-f(2))/dr32
df43=(f(4)-f(3))/dr43
ddf42=(df43-df32)/dr42
ddf31=(df32-df21)/dr31
b(3)=(ddf42-ddf31)/dr41
b(2)=ddf31-b(3)*(r(1)+r(2)+r(3))
b(1)=df21-b(2)*(r(2)+r(1))-b(3)*(r2(1)+r2(2)+r(1)*r(2))
b(0)=f(1)-r(1)*(b(1)+r(1)*(b(2)+r(1)*b(3)))
return
end subroutine series
!----------------------------------------------------------------------
!----------------------------------------------------------------------
!
! I/O routines
!
!----------------------------------------------------------------------
subroutine write_grid_on_file(iunit,grid)
implicit none
type(radial_grid_type), intent(in) :: grid
integer, intent(in) :: iunit
integer :: n
!
WRITE(iunit,'(i8)') grid%mesh
WRITE(iunit,'(e20.10)') grid%dx
WRITE(iunit,'(e20.10)') grid%xmin
WRITE(iunit,'(e20.10)') grid%zmesh
WRITE(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh)
WRITE(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh)
WRITE(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh)
! WRITE(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh)
return
end subroutine write_grid_on_file
subroutine read_grid_from_file(iunit,grid)
implicit none
type(radial_grid_type), intent(inout) :: grid
integer, intent(in) :: iunit
integer :: n
!
READ(iunit,'(i8)') grid%mesh
READ(iunit,'(e20.10)') grid%dx
READ(iunit,'(e20.10)') grid%xmin
READ(iunit,'(e20.10)') grid%zmesh
READ(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh)
READ(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh)
READ(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh)
! READ(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh)
grid%rab(1:grid%mesh) = grid%r(1:grid%mesh) * grid%dx
grid%rm1(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh)
grid%rm2(1:grid%mesh) = 1._dp/grid%r2(1:grid%mesh)
grid%rm3(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh)**3
return
end subroutine read_grid_from_file
!----------------------------------------------------------------------
END MODULE radial_grids