quantum-espresso/LR_Modules/set_dbecsum_nc.f90

180 lines
6.8 KiB
Fortran

!
! Copyright (C) 2007-2016 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!----------------------------------------------------------------------------
SUBROUTINE set_dbecsum_nc(dbecsum_nc, dbecsum, npe)
!----------------------------------------------------------------------------
USE kinds, ONLY : DP
USE ions_base, ONLY : nat, ntyp => nsp, ityp
USE uspp_param, only: upf, nhm
USE noncollin_module, ONLY : nspin_mag
USE lsda_mod, ONLY : nspin
IMPLICIT NONE
INTEGER :: npe
INTEGER :: np, na
COMPLEX(DP), INTENT(IN) :: dbecsum_nc( nhm, nhm, nat, nspin, npe)
COMPLEX(DP), INTENT(OUT) :: dbecsum( nhm*(nhm+1)/2, nat, nspin_mag, npe)
DO np = 1, ntyp
IF ( upf(np)%tvanp ) THEN
DO na = 1, nat
IF (ityp(na)==np) THEN
IF (upf(np)%has_so) THEN
CALL transform_dbecsum_so(dbecsum_nc,dbecsum,na, npe)
ELSE
CALL transform_dbecsum_nc(dbecsum_nc,dbecsum,na, npe)
END IF
END IF
END DO
END IF
END DO
RETURN
END SUBROUTINE set_dbecsum_nc
!
!----------------------------------------------------------------------------
SUBROUTINE transform_dbecsum_so(dbecsum_nc,dbecsum,na,modes)
!----------------------------------------------------------------------------
!
! This routine multiply dbecsum_nc by the identity and the Pauli
! matrices, rotate it as appropriate for the spin-orbit case
! and saves it in dbecsum to use it in the calculation of
! the charge and magnetization.
!
USE kinds, ONLY : DP
USE ions_base, ONLY : nat, ntyp => nsp, ityp
USE uspp_param, ONLY : nh, nhm
USE lsda_mod, ONLY : nspin
USE uspp, ONLY : ijtoh
USE noncollin_module, ONLY : npol, nspin_mag
USE spin_orb, ONLY : fcoef, domag
!
IMPLICIT NONE
INTEGER :: na, modes
COMPLEX(DP) :: dbecsum_nc( nhm, nhm, nat, nspin, modes)
COMPLEX(DP) :: dbecsum( nhm*(nhm+1)/2, nat, nspin_mag, modes)
!
! ... local variables
!
INTEGER :: ih, jh, lh, kh, ijh, np, is1, is2, ijs, mode
COMPLEX(DP) :: fac
LOGICAL :: same_lj
np=ityp(na)
DO mode=1,modes
DO ih = 1, nh(np)
DO kh = 1, nh(np)
IF (same_lj(kh,ih,np)) THEN
DO jh = 1, nh(np)
ijh=ijtoh(ih,jh,np)
DO lh=1,nh(np)
IF (same_lj(lh,jh,np)) THEN
ijs=0
DO is1=1,npol
DO is2=1,npol
ijs=ijs+1
fac=dbecsum_nc(kh,lh,na,ijs,mode)
dbecsum(ijh,na,1,mode)=dbecsum(ijh,na,1,mode)+fac* &
(fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,1,is2,np) + &
fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,2,is2,np) )
IF (domag) THEN
dbecsum(ijh,na,2,mode)=dbecsum(ijh,na,2,mode)+ &
fac * &
(fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,2,is2,np)+&
fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,1,is2,np) )
dbecsum(ijh,na,3,mode)=dbecsum(ijh,na,3,mode)+ &
fac*(0.d0,-1.d0)*&
(fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,2,is2,np) - &
fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,1,is2,np) )
dbecsum(ijh,na,4,mode)=dbecsum(ijh,na,4,mode) &
+ fac * &
(fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,1,is2,np) - &
fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,2,is2,np) )
END IF
END DO
END DO
END IF
END DO
END DO
END IF
END DO
END DO
END DO
RETURN
END SUBROUTINE transform_dbecsum_so
!
!----------------------------------------------------------------------------
SUBROUTINE transform_dbecsum_nc(dbecsum_nc,dbecsum,na,modes)
!----------------------------------------------------------------------------
!
! This routine multiply dbecsum_nc by the identity and the Pauli
! matrices and saves it in dbecsum to use it in the calculation of
! the charge and magnetization.
!
USE kinds, ONLY : DP
USE ions_base, ONLY : nat, ntyp => nsp, ityp
USE uspp_param, ONLY : nh, nhm
USE lsda_mod, ONLY : nspin
USE noncollin_module, ONLY : npol, nspin_mag
USE spin_orb, ONLY : domag
!
IMPLICIT NONE
INTEGER :: na, modes
COMPLEX(DP) :: dbecsum_nc( nhm, nhm, nat , nspin , modes)
COMPLEX(DP) :: dbecsum( nhm * (nhm + 1) /2 , nat , nspin_mag, modes)
!
! ... local variables
!
INTEGER :: ih, jh, ijh, np, mode
np=ityp(na)
DO mode=1, modes
ijh=1
DO ih = 1, nh(np)
dbecsum(ijh,na,1,mode)= dbecsum(ijh,na,1,mode)+ &
dbecsum_nc(ih,ih,na,1,mode)+dbecsum_nc(ih,ih,na,4,mode)
IF (domag) THEN
dbecsum(ijh,na,2,mode)= dbecsum(ijh,na,2,mode)+ &
dbecsum_nc(ih,ih,na,2,mode)+ &
dbecsum_nc(ih,ih,na,3,mode)
dbecsum(ijh,na,3,mode)= dbecsum(ijh,na,3,mode)+ &
(0.d0,-1.d0)*(dbecsum_nc(ih,ih,na,2,mode)- &
dbecsum_nc(ih,ih,na,3,mode) )
dbecsum(ijh,na,4,mode)= dbecsum(ijh,na,4,mode)+ &
dbecsum_nc(ih,ih,na,1,mode)-dbecsum_nc(ih,ih,na,4,mode)
END IF
ijh=ijh+1
DO jh = ih+1, nh(np)
dbecsum(ijh,na,1,mode)= dbecsum(ijh,na,1,mode) + &
dbecsum_nc(ih,jh,na,1,mode)+dbecsum_nc(ih,jh,na,4,mode) &
+dbecsum_nc(jh,ih,na,1,mode)+dbecsum_nc(jh,ih,na,4,mode)
IF (domag) THEN
dbecsum(ijh,na,2,mode)= dbecsum(ijh,na,2,mode) + &
dbecsum_nc(ih,jh,na,2,mode)+ &
dbecsum_nc(ih,jh,na,3,mode) &
+ dbecsum_nc(jh,ih,na,2,mode)+ &
dbecsum_nc(jh,ih,na,3,mode)
dbecsum(ijh,na,3,mode)= dbecsum(ijh,na,3,mode) + &
(0.d0,-1.d0)*(dbecsum_nc(ih,jh,na,2,mode)- &
dbecsum_nc(ih,jh,na,3,mode) &
+ dbecsum_nc(jh,ih,na,2,mode)- &
dbecsum_nc(jh,ih,na,3,mode) )
dbecsum(ijh,na,4,mode)= dbecsum(ijh,na,4,mode) + &
dbecsum_nc(ih,jh,na,1,mode)-dbecsum_nc(ih,jh,na,4,mode)+&
dbecsum_nc(jh,ih,na,1,mode)-dbecsum_nc(jh,ih,na,4,mode)
END IF
ijh=ijh+1
END DO
END DO
END DO
RETURN
END SUBROUTINE transform_dbecsum_nc
!