quantum-espresso/LR_Modules/lr_sm1_psi.f90

497 lines
15 KiB
Fortran

!
! Copyright (C) 2001-2019 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
SUBROUTINE lr_sm1_psi (ik, lda, n, m, psi, spsi)
!----------------------------------------------------------------------------
!
! This subroutine applies the S^{-1} matrix to m wavefunctions psi
! and puts the results in spsi.
! See Eq.(13) in B. Walker and R. Gebauer, JCP 127, 164106 (2007).
!
! INPUT: ik k point under consideration
! lda leading dimension of arrays psi, spsi
! n true dimension of psi, spsi
! m number of states psi
! psi the wavefunction to which the S^{-1}
! matrix is applied
! OUTPUT: spsi = S^{-1}*psi
!
! Original routine written by R. Gebauer
! Modified by Osman Baris Malcioglu (2009)
! Modified by Iurii Timrov (2013)
! Simplified and generalized to the relativistic case by Andrea Dal Corso (2018)
!
USE kinds, ONLY : DP
USE control_flags, ONLY : gamma_only
USE klist, ONLY : xk, igk_k, ngk
USE qpoint, ONLY : ikks, ikqs, nksq
USE uspp, ONLY : okvan, vkb, nkb, qq_nt
USE uspp_param, ONLY : nh, upf
USE ions_base, ONLY : ityp, nat, ntyp=>nsp
USE becmod, ONLY : bec_type, becp, calbec
USE mp, ONLY : mp_sum
USE mp_global, ONLY : intra_bgrp_comm
USE noncollin_module, ONLY : noncolin, npol, nspin_mag
!
IMPLICIT NONE
INTEGER, INTENT(in) :: ik, lda,n,m
COMPLEX(DP), INTENT(in) :: psi(lda*npol,m)
COMPLEX(DP), INTENT(out) :: spsi(lda*npol,m)
!
CALL start_clock( 'lr_sm1_psi' )
!
IF ( gamma_only ) THEN
CALL sm1_psi_gamma()
ELSEIF (noncolin) THEN
CALL sm1_psi_nc()
ELSE
CALL sm1_psi_k()
ENDIF
!
CALL stop_clock( 'lr_sm1_psi' )
!
RETURN
!
CONTAINS
!
SUBROUTINE sm1_psi_gamma()
!-----------------------------------------------------------------------
!
! gamma_only version
!
! Note: 1) vkb must be computed before calling this routine
! 2) the array bbg must be deallocated somewhere
! outside of this routine.
!
USE becmod, ONLY : bec_type,becp,calbec
USE realus, ONLY : real_space, invfft_orbital_gamma, &
initialisation_level, fwfft_orbital_gamma, &
calbec_rs_gamma, add_vuspsir_gamma, &
v_loc_psir, s_psir_gamma
USE lrus, ONLY : bbg
!
IMPLICIT NONE
!
! ... local variables
!
INTEGER :: ibnd
! counters
REAL(DP), ALLOCATABLE :: ps(:,:)
!
! Initialize spsi : spsi = psi
!
CALL ZCOPY( lda * npol * m, psi, 1, spsi, 1 )
!
IF ( nkb == 0 .OR. .NOT. okvan ) RETURN
!
IF (real_space) THEN
!
DO ibnd=1,m,2
CALL invfft_orbital_gamma(psi,ibnd,m)
CALL calbec_rs_gamma(ibnd,m,becp%r)
ENDDO
!
ELSE
CALL calbec(n,vkb,psi,becp,m)
ENDIF
!
! Use the array ps as a workspace
ALLOCATE(ps(nkb,m))
ps(:,:) = 0.D0
!
! Now let us apply the operator S^{-1}, given by Eq.(13), to the functions psi.
! Let's DO this in 2 steps.
!
! Step 1 : ps = lambda * <beta|psi>
! Here, lambda = bbg, and <beta|psi> = becp%r
!
call DGEMM( 'N','N',nkb,m,nkb,1.d0,bbg(:,:),nkb,becp%r,nkb,0.d0,ps,nkb)
!
! Step 2 : |spsi> = S^{-1} * |psi> = |psi> + ps * |beta>
!
call DGEMM('N','N',2*n,m,nkb,1.d0,vkb,2*lda,ps,nkb,1.d0,spsi,2*lda)
!
DEALLOCATE(ps)
!
RETURN
!
END SUBROUTINE sm1_psi_gamma
SUBROUTINE sm1_psi_k()
!-----------------------------------------------------------------------
!
! k-points version
! Note: the array bbk must be deallocated somewhere
! outside of this routine.
!
USE lrus, ONLY : bbk
!
IMPLICIT NONE
!
! ... local variables
!
INTEGER :: na, nt, ibnd, ii, jkb
INTEGER :: ik1, & ! dummy index for k points
ikk, & ! index of the point k
ikq, & ! index of the point k+q
npwq ! number of the plane-waves at point k+q
COMPLEX(DP), ALLOCATABLE :: ps(:,:)
!
! Initialize spsi : spsi = psi
!
CALL ZCOPY( lda*m, psi, 1, spsi, 1 )
!
IF ( nkb == 0 .OR. .NOT. okvan ) RETURN
!
! Now set up the indices ikk and ikq such that they
! correspond to the points k and k+q using the index ik,
! which was passed to this routine as an input.
!
ikk = ikks(ik)
ikq = ikqs(ik)
!
IF (n.NE.ngk(ikq)) CALL errore( 'sm1_psiq_k', &
& 'Mismatch in the number of plane waves', 1 )
!
! Calculate beta-functions vkb for a given k+q point.
!
CALL init_us_2 (n, igk_k(1,ikq), xk(1,ikq), vkb)
!
! Compute the product of the beta-functions vkb with the functions psi
! at point k+q, and put the result in becp%k.
! becp%k(ikb,jbnd) = \sum_G vkb^*(ikb,G) psi(G,jbnd) = <beta|psi>
!
CALL calbec(n, vkb, psi, becp, m)
!
! Use ps as a work space.
!
ALLOCATE(ps(nkb,m))
ps(:,:) = (0.d0,0.d0)
!
! Apply the operator S^{-1}, given by Eq.(13), to the functions psi.
! Let's DO this in 2 steps.
!
! Step 1 : calculate the product
! ps = lambda * <beta|psi>
!
CALL ZGEMM( 'N', 'N', nkb, m, nkb, (1.D0, 0.D0), bbk(1,1,ik), &
nkb, becp%k, nkb, (1.D0, 0.D0), ps, nkb )
!
! Step 2 : |spsi> = S^{-1} * |psi> = |psi> + ps * |beta>
!
CALL ZGEMM( 'N', 'N', n, m, nkb, (1.D0, 0.D0), vkb, &
lda, ps, nkb, (1.D0, 0.D0), spsi, lda )
!
DEALLOCATE(ps)
!
RETURN
!
END SUBROUTINE sm1_psi_k
SUBROUTINE sm1_psi_nc()
!-----------------------------------------------------------------------
!
! Noncollinear case
!
USE uspp, ONLY : qq_so
USE lrus, ONLY : bbnc
USE spin_orb, ONLY : lspinorb
!
IMPLICIT NONE
!
! ... local variables
!
INTEGER :: ibnd, ii, jkb, ipol, jpol, iis, jkbs
INTEGER :: ik1, & ! dummy index for k points
ikk, & ! index of the point k
ikq, & ! index of the point k+q
npwq ! number of the plane-waves at point k+q
COMPLEX(DP), ALLOCATABLE :: ps(:,:)
!
! Initialize spsi : spsi = psi
!
CALL ZCOPY( lda*npol*m, psi, 1, spsi, 1 )
!
IF ( nkb == 0 .OR. .NOT. okvan ) RETURN
!
! Now set up the indices ikk and ikq such that they
! correspond to the points k and k+q using the index ik,
! which was passed to this routine as an input.
!
ikk = ikks(ik)
ikq = ikqs(ik)
!
IF (n/=ngk(ikq)) CALL errore( 'sm1_psiq_nc', &
& 'Mismatch in the number of plane waves', 1 )
!
! Calculate beta-functions vkb for a given k+q point.
!
CALL init_us_2 (n, igk_k(1,ikq), xk(1,ikq), vkb)
!
! Compute the product of the beta-functions vkb with the functions psi
! at point k+q, and put the result in becp%k.
! becp%k(ikb,jbnd) = \sum_G vkb^*(ikb,G) psi(G,jbnd) = <beta|psi>
!
CALL calbec(n, vkb, psi, becp, m)
!
! Use ps as a work space.
!
ALLOCATE(ps(nkb*npol,m))
ps(:,:) = (0.d0,0.d0)
!
! Apply the operator S^{-1}, given by Eq.(13), to the functions psi.
! Let's DO this in 2 steps.
!
! Step 1 : calculate the product
! ps = lambda * <beta|psi>
!
CALL ZGEMM( 'N', 'N', nkb*npol, m, nkb*npol, (1.D0, 0.D0), bbnc(1,1,ik), &
nkb*npol, becp%nc, nkb*npol, (1.D0, 0.D0), ps, nkb*npol )
!
! Step 2 : |spsi> = S^{-1} * |psi> = |psi> + ps * |beta>
!
CALL ZGEMM( 'N', 'N', n, m*npol, nkb, (1.D0, 0.D0), vkb, &
& lda, ps, nkb, (1.D0, 0.D0), spsi, lda )
!
DEALLOCATE(ps)
!
RETURN
!
END SUBROUTINE sm1_psi_nc
END SUBROUTINE lr_sm1_psi
SUBROUTINE lr_sm1_initialize()
!
! This routine initializes the coefficients of S^-1 and saves them in
! bbg, bbk or bbnc
!
USE kinds, ONLY : DP
USE control_flags, ONLY : gamma_only
USE lrus, ONLY : bbg, bbk, bbnc
USE klist, ONLY : xk, ngk, igk_k
USE qpoint, ONLY : nksq, ikks, ikqs
USE wvfct, ONLY : npwx
USE becmod, ONLY : calbec
USE uspp, ONLY : vkb, nkb, qq_nt, qq_so
USE uspp_param, ONLY : nh, upf
USE ions_base, ONLY : ityp,nat,ntyp=>nsp
USE mp, ONLY : mp_sum
USE mp_global, ONLY : intra_bgrp_comm
USE noncollin_module, ONLY : noncolin, npol
USE matrix_inversion, ONLY : invmat
IMPLICIT NONE
!
INTEGER :: ik1, ikk, ikq, npw, npwq, na, nt, ikb, jkb, ijkb0, ih, jh, ii, &
ipol, jpol, kpol, ijs, iis, ikbs, jkbs, iks, kjs
REAL(DP), ALLOCATABLE :: psr(:,:)
COMPLEX(DP), ALLOCATABLE :: ps(:,:), &
bbnc_aux(:,:) ! auxiliary array
CALL start_clock( 'lr_sm1_initialize' )
! Use the arrays bbg and bbk temporarily as a work space
! in order to save the memory.
IF (gamma_only) THEN
bbg = 0.0d0
ALLOCATE(psr(nkb,nkb))
ELSE
IF (noncolin) THEN
ALLOCATE(bbnc_aux(nkb,nkb))
bbnc_aux = (0.0d0,0.0d0)
ELSE
bbk = (0.0d0,0.0d0)
ENDIF
ALLOCATE(ps(nkb*npol,nkb*npol))
ENDIF
DO ik1 = 1, nksq
!
ikk = ikks(ik1)
ikq = ikqs(ik1)
npw = ngk(ikk)
npwq = ngk(ikq)
!
! The array ps must be nullified inside the loop over k points.
! The array psr can be nullified also outside the loop (since
! there is only one k point), but let us keep it here for
! consistency.
!
IF (gamma_only) THEN
psr(:,:) = (0.d0,0.d0)
ELSE
ps(:,:) = (0.d0,0.d0)
ENDIF
!
! Calculate beta-functions vkb for a given k+q point.
!
CALL init_us_2 (npwq, igk_k(1,ikq), xk(1,ikq), vkb)
!
! Calculate the coefficients B_ij defined by Eq.(15).
! B_ij = <beta(i)|beta(j)>, where beta(i) = vkb(i).
!
IF (gamma_only) THEN
CALL calbec (npw, vkb, vkb, bbg, nkb)
ELSEIF (noncolin) THEN
CALL zgemm('C','N',nkb,nkb,npwq,(1.d0,0.d0),vkb, &
npwx,vkb,npwx,(0.d0,0.d0),bbnc_aux,nkb)
CALL mp_sum(bbnc_aux, intra_bgrp_comm)
ELSE
CALL zgemm('C','N',nkb,nkb,npwq,(1.d0,0.d0),vkb, &
npwx,vkb,npwx,(0.d0,0.d0),bbk(1,1,ik1),nkb)
CALL mp_sum(bbk(:,:,ik1), intra_bgrp_comm)
ENDIF
!
!
! Calculate the product of q_nm and B_ij of Eq.(16).
!
ijkb0 = 0
DO nt=1,ntyp
IF (upf(nt)%tvanp) THEN
DO na=1,nat
IF (ityp(na)==nt) THEN
DO ii=1,nkb
DO jh=1,nh(nt)
!
jkb=ijkb0 + jh
!
DO ih=1,nh(nt)
!
ikb = ijkb0 + ih
!
IF (gamma_only) THEN
psr(ikb,ii) = psr(ikb,ii) + bbg(jkb,ii) &
* qq_nt(ih,jh,nt)
ELSEIF(noncolin) THEN
ijs=0
DO ipol=1, npol
ikbs = ikb + nkb * ( ipol - 1 )
DO jpol=1, npol
iis = ii + nkb * ( jpol - 1 )
ijs = ijs + 1
ps(ikbs,iis) = ps(ikbs,iis) + &
bbnc_aux(jkb,ii)*qq_so(ih,jh,ijs,nt)
ENDDO
ENDDO
ELSE
ps(ikb,ii) = ps(ikb,ii) + bbk(jkb,ii,ik1) &
* qq_nt(ih,jh,nt)
ENDIF
!
ENDDO
ENDDO
ENDDO
ijkb0 = ijkb0+nh(nt)
ENDIF
ENDDO
ELSE
DO na = 1, nat
IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt)
ENDDO
ENDIF
ENDDO
!
! Add an identity to q_nm * B_ij [see Eq.(16)].
! ps = (1 + q*B)
!
IF (gamma_only) THEN
DO ii=1,nkb
psr(ii,ii) = psr(ii,ii) + 1.d0
ENDDO
ELSE
DO ii=1,nkb*npol
ps(ii,ii) = ps(ii,ii) + (1.d0,0.d0)
ENDDO
ENDIF
!
! Invert matrix: (1 + q*B)^{-1}
!
IF (gamma_only) THEN
CALL invmat( nkb, psr )
ELSE
CALL invmat( nkb*npol, ps )
ENDIF
!
! Nulify the arrays bbg/bbk/bbnc and put a final result inside.
!
IF (gamma_only) THEN
bbg(:,:)=0.0_DP
ELSEIF (noncolin) THEN
bbnc(:,:,ik1) = (0.d0,0.d0)
ELSE
bbk(:,:,ik1) = (0.d0,0.d0)
ENDIF
!
! Finally, let us calculate lambda_nm = -(1+q*B)^{-1} * q
! Let us use the array bbk and put there the values of the lambda
! coefficients.
!
ijkb0 = 0
DO nt=1,ntyp
IF (upf(nt)%tvanp) THEN
DO na=1,nat
IF (ityp(na)==nt) THEN
DO ii=1,nkb*npol
DO jh=1,nh(nt)
!
jkb=ijkb0 + jh
!
DO ih=1,nh(nt)
!
ikb = ijkb0 + ih
!
IF (gamma_only) THEN
bbg(ii,jkb) = bbg(ii,jkb) &
- psr(ii,ikb) * qq_nt(ih,jh,nt)
ELSEIF (noncolin) THEN
kjs = 0
DO kpol=1,npol
ikbs = ikb + nkb * (kpol-1)
DO jpol=1,npol
jkbs=jkb + nkb * (jpol-1)
kjs=kjs+1
bbnc(ii,jkbs,ik1) = &
bbnc(ii,jkbs,ik1) - &
ps(ii,ikbs)*qq_so(ih,jh,kjs,nt)
ENDDO
ENDDO
ELSE
bbk(ii,jkb,ik1) = bbk(ii,jkb,ik1) - &
ps(ii,ikb) * qq_nt(ih,jh,nt)
ENDIF
!
ENDDO
ENDDO
ENDDO
ijkb0 = ijkb0+nh(nt)
ENDIF
ENDDO
ELSE
DO na = 1, nat
IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt)
ENDDO
ENDIF
ENDDO
!
ENDDO ! loop on k points
!
IF (gamma_only) THEN
DEALLOCATE(psr)
ELSE
IF (noncolin) DEALLOCATE(bbnc_aux)
DEALLOCATE(ps)
ENDIF
CALL stop_clock( 'lr_sm1_initialize' )
RETURN
END SUBROUTINE lr_sm1_initialize